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Abstract. The interactive verification system VeriFun is based on a
polymorphic call-by-value functional language and on a first-order logic
with initial model semantics w.r.t. constructors. It is designed to perform
automatic induction proofs and can also deal with partial functions. This
paper provides a reconstruction of the corresponding logic and seman-
tics using the standard treatment of undefinedness which adapts and
improves the VeriFun-logic by allowing reasoning on nonterminating ex-
pressions and functions. Equality of expressions is defined as contextual
equivalence based on observing termination in all closing contexts. The
reconstruction shows that several restrictions of the VeriFun framework
can easily be removed, by natural generalizations: mutual recursive func-
tions, abstractions in the data values, and formulas with arbitrary quan-
tifier prefix can be formulated. The main results of this paper are: an
extended set of deduction rules usable in VeriFun under the adapted
semantics is proved to be correct, i.e. they respect the observational
equivalence in all extensions of a program. We also show that certain
classes of theorems are conservative under extensions, like universally
quantified equations. Also other special classes of theorems are analyzed
for conservativity.

1 Introduction

Proving properties of recursively defined functions by induction is a clean method
for validating properties of programs and functions that operate on finite data
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structures. There are a couple of tools that are designed to perform this task
automatically, or give support in constructing a proof. Such a system is VeriFun
(see [WS05b,SWGA07,Wal94,Ade09] and [Ver]).
The logical framework consists of a pure and strict functional programming
language and a logical component that allows to formulate and prove lemmas
about properties and the behavior of functions. Since one is usually interested in
the behavior of functions on data objects like numbers, lists or trees, the focus
of the logic and the system is to prove properties of the functions on the data,
like commutativity of addition (on Peano-numbers), or associativity of append
on lists.
In general the system VeriFun requires that functions are proved to termi-
nate before any other lemma about the function can be proved. Nevertheless,
partial functions are permitted, like the selector-functions head and tail for
lists, which are undefined for the empty list. These are terminating according
to the VeriFun-semantics since undefined expressions are seen as terminating.
Details for this approach in VeriFun can be found in [WS05b,WS05a,Sch07]
and for different work on the integration of partial defined functions into log-
ics see e.g. [Far96,MS97]. The semantics for the logics of VeriFun in the pa-
pers [WS05b,SWGA07,Ade09] is based on term-algebras over the data con-
structors and on the other hand on evaluation in a strict functional language.
Undefined functional expressions are treated in a non-standard way as hav-
ing any value of an appropriate type, which validates nonsense theorems like
tail(Nil) = tail(tail(Nil)) =⇒ tail(Nil) = Nil.
A further example for the difference from our approach and the approach of
VeriFun is that in our logic all undefined objects (of a certain type) are contex-
tually equal, whereas in VeriFun there may be different undefined objects. For
example minus(0, 1) and minus(0, 2) are not equal in VeriFun whereas these
terms are equal w.r.t. our contextual equivalence. Also, minus(2, 4) = 25 is false
in our logic, whereas it is neither true nor false in VeriFun.

The main goal of this paper is to provide a reconstruction (and adjustment
and generalization) of the semantics of the logical system of VeriFun with the
intention to deal with undefined expressions in a standard semantics way.
Thus our approach can handle partial functions but also non-terminating pro-
grams in general on the logical level.
Our reconstruction starts from a programming language semantics view: based
on the operational semantics of an ML-like core language which comprises poly-
morphic (and recursive) function definitions and data types, we use the well-
established notion of contextual equivalence as equational theory for programs
(see e.g. [Plo77,BH99,Pit00,Pie02]). Contextual equivalence equates expressions
if they have the same observational behavior (i.e. termination) if they are plugged
inside any surrounding program context. An advantage is that contextual equiv-
alence smoothly integrates the semantics of higher-order functions. We deal with
the problem of partially defined data-selectors by using case-expressions, which
must have an alternative for every constructor of the appropriate type. Nev-
ertheless, it is possible to model partial functions and selectors by inserting a
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non-terminating expression as subterm at the appropriate positions. Run-time
errors like e.g. tail(Nil) are then treated like non-terminating expressions, since
contextual equivalence equates nontermination and undefinedness (also in a do-
main theoretic way).

For the logical level we use a two-valued logic of predicate logic formulas where
the atoms are equalities between expressions, the semantics of these equations
is given by contextual equivalence. The formulas are monomorphic where the
quantification is over closed data values of the appropriate type.

The logical foundations also should justify the deduction rules of a reasoner. An
important principle is that theorems about defined functions must be invariant
when the functional language is extended by further function definitions and
data types, i.e., conservativity by extending programs. This principle must also
hold for the deduction rules of a prover.

The main result of this paper are sound justifications which deduction rules (in
many cases these are program transformations) of a reasoner obey the principle
of conservativity under extension. For example call-by-value (beta) and (case)
reductions are correct (Theorem 6.12), almost all deduction rules of VeriFun
are also correct with respect to our semantics with the exception of call-by-
name beta-reduction. In addition, several deduction rules concerning undefined
expressions are valid, which are missing in VeriFun, and adapted call-by-name
reductions and further deduction rules are correct (Theorem 6.12). Also several
classes of theorems are shown to be conservative under extension, an important
class are universally quantified equations (Theorem 8.4) and general monomor-
phic theorems if functions do not occur in the data (Theorem 8.7). We have to
leave open the question of conservativity in the general case of monomorphic
theorems, where also functions are permitted in the data. A side effect of the
reconstruction are the following generalizations: higher-order values may also
occur in data objects, in the logical level functions that may not terminate on
certain arguments are permitted, and mutual recursive function definitions are
possible on the top level.

To establish these results we introduce proof techniques for contextual equal-
ity in combination with polymorphic types (for a call-by-need calculus see also
[SSSH09]), which allow to prove a CIU-Theorem from context lemmas (for a
general approach see also [SSS10]), and an adaptation of the subterm property
of simply-typed lambda-calculi.

An interesting generalization of the logic expressiveness are polymorphic formu-
las (the quantified type may have type variables). These are expressible and in
the scope of the prover VeriFun, provided the quantifier prefix is ∀∗. Conservativ-
ity of polymorphic theorems is false in general. We conjecture that polymorphic
theorems that are universally quantified polymorphic equations also hold in ex-
tensions, but the current proof techniques are insufficient. However, with a little
bit of care, the usual inductive proof techniques and deduction rules, as employed
by VeriFun, automatically ensure that a proved theorem (usually a universally
quantified formula) holds for all program extensions.
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Structure of the Paper In Sections 2 and 3 we define the syntax and semantics
of the polymorphic call-by-value functional language, its operational semantics
and the equality relation. Then we show the CIU-Lemma via a context lemma
(Section 4). In Sections 5 and 6 we show that equality is conservative if pro-
grams are extended by new function definitions and new data types, provided
some preconditions hold. In Section 7 bisimulation is defined and shown to be
a characterization of equality. Finally, in Section 8 we explain the logic and its
semantics.

2 The Functional Language

There are two levels of the syntax: (i) terms and defined functions, and (ii) the
logical level. We focus now on (i), whereas (ii) is postponed to Section 8. Terms
(or expressions) as well as types are built over a signature (F ,K,D) where F is
a finite set of function symbols, K is a finite set of type constructors, and D is a
finite set of data constructors. Type constructors K ∈ K have a fixed arity ar(K)
and for every K ∈ K there is a finite set ∅ 6= DK ⊆ D of data constructors cK,i

where cK,i ∈ DK comes with a fixed arity ar(cK,i). For different K1, K2 ∈ K it
holds DK1 ∩DK2 = ∅ and D =

⋃
K∈K

Dk.

2.1 Syntax of Types

Since terms are constructed under polymorphic typing restrictions, we first define
types, data and type constructors and then the expression level.
Types T are defined by: T ::= X | (T1 → T2) | (K T1 . . . Tar(K)), where the sym-
bols X, Xi are type variables, T, Ti stand for types, and K ∈ K is a type construc-
tor. As usual we assume function types to be right-associative, i.e. T1 → T2 → T3

means T1 → (T2 → T3). Types of the form τ1 → τ2 are called arrow types, and
types (K T1 . . . Tar(K)) are called constructed types. We also will use quantified
types ∀X .T , where T is a type, and where X is the set of all free type variables
in T . Types T are defined by: T ::= X | (T1 → T2) | (K T1 . . . Tar(K)), where
the symbols X, Xi are type variables, T, Ti stand for types, and K ∈ K is a
type constructor. As usual we assume function types to be right-associative, i.e.
T1 → T2 → T3 means T1 → (T2 → T3). Types of the form τ1 → τ2 are called ar-
row types, and types (K T1 . . . Tar(K)) are called constructed types. We also allow
quantified types ∀X .T , where T is a type, and where X is the set of all free type
variables in T . Let K be a type constructor with data constructors DK . Then the
(universally quantified) type typeOf (cK,i) of every constructor cK,i ∈ DK must
be of the form ∀X1, . . . , Xar(K).TK,i,1 → . . . → TK,i,mi

→ K X1 . . . Xar(K),
where mi = ar(cK,i), X1, . . . , Xar(K) are distinct type variables, and where only
the variables Xi occur as free type variables in TK,i,1, . . . , TK,i,mi

.

2.2 Syntax of Expressions of P
The (type-free) syntax of expressions over a signature (F ,K,D) is as follows,
where E means expressions, K ∈ K is a type constructor, c, ci are data con-
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structors (i.e. elements of some set DK where K ∈ K, V generates a variable of
some infinite set of variables, and Alt is a case-alternative:

E ::= V | F | (E E) | λV.E | (ci E1 . . . Ear(ci))
| (caseK E Alt1 . . . Altn) where n = |DK |

Alti ::= ((ci V1 . . . Var(ci)) ->E)

Note that data constructors can only be used with all their arguments present.
We assume that there is a caseK for every type constructor K. The caseK-
construct is assumed to have a case-alternative ((ci x1 . . . xar(ci)) -> e) for every
constructor ci ∈ DK , where the variables in a pattern have to be distinct. The
scoping rules in expressions are as usual. We assume that expressions satisfy the
distinct variable convention before reduction is applied, which can be achieved
by a renaming of bound variables. We assume that the 0-ary constructors True,
False for type constructor Bool, and the 0-ary constructor Nil and the infix
binary constructor “:” for lists with unary type constructor List are among the
constructors.
Additionally we require the notion of contexts C, which are like expressions with
the difference that the hole [·] may occur at a subexpression position, and where
the hole occurs exactly once in C. The notation C[s] means the expression that
results from replacing the hole in C by s, where perhaps variables are captured.
E.g. for the context C = λx.[·] it holds C[λy.x] = λx.λy.x. A value v is defined
as v ::= x | λx.s | (c v1 . . . vn), i.e. a variable, an abstraction, or a constructor-
expression (c v1 . . . vn), where the immediate subexpressions are also values.
For an expression t the set of free variables of t is denoted as FV (t) and the
set of function symbols occurring in t is denoted as FS (t). An expression t is
called closed iff FV (t) = ∅, and otherwise called open. For a (perhaps universally
quantified) type T the set of free type variables is denoted with FTV (T ).

Definition 2.1. A program P consists of

1. a signature (F ,K,D).
2. a set of pairs {(f, df ) | f ∈ F}, where df is a closed value called the def-

initional expression of f , and FS (df ) ⊆ F . Usually, the pairs (f, df ) are
written f = df .

With LP we denote the language for the expressions built over the signature
corresponding to P. Accordingly for a given program P we call the expressions
P-expressions, the values P-values, the contexts P-contexts, and the types P-
types.

Note that it is allowed that functions are defined mutually recursive.

Example 2.2. The identity function can be defined as id = λx.x where
id ∈ F , and the map-function as map = λf, xs.case xs ((y : ys -> (f y :
map f xs) (Nil -> Nil)), provided map ∈ F .
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2.3 Typing of Expressions

We extend expressions now with type labels and distinguish between usual ex-
pressions and definitional expressions that are used to built the definition of the
functions:

Definition 2.3. Every expression and subexpressions of P is labeled with a
closed (unquantified) type, and every pair (f, df ) | f ∈ F is labelled with a
perhaps quantified type. This type is also called the type of df for short.
There are two kinds of expressions:

– Program expressions, which are the expressions and subexpressions that ap-
pear in the definitions of the function symbols. These may be labelled with
types that may contain free variables.

– (usual) expressions: These may be labeled only with monomorphic types (i.e.
closed types) that do not contain free type variables.

We also assume that contexts are type-labelled like expressions, where the hole
is labeled with a closed type T , written C[· :: T ].

Assumption 2.4. We assume that the polymorphic types of the function defini-
tions can be verified by a polymorphic type system using a type derivation system
as given in the appendix.

Below in Subsection 2.5 we will define consistency rules for the type labels.

2.4 Type-Substitutions

Given a quantified type ∀X .T , a (type-)substitution ρ for ∀X .T substitutes types
for type variables X, such that ρ(T ) is an (unquantified) type.

Example 2.5. Let T be the type ∀a, b.a → b. Then Int → Int is an instance of
T , as well as a → Int, where the latter has a variable name in common with T .

Example 2.6. The polymorphic type of the identity λx.x is ∀a.a → a. The type of
the function composition λf, g, x.f (g x) is ∀a, b, c.(b → c) → (a → b) → a → c.

2.5 Type Consistency Rules

In this section we will detail the assumptions on the Church-style polymorphic
type system that fixes the type also of subexpressions using labels at every
subexpression. We will define consistency rules that ensure that the labeling of
the subexpressions is not contradictory.
We assume that for every quantifier-free type T , there is an infinite set VT of
variables of this type. If x ∈ VT , then T is called the built-in type of the variable
x. This means that renamings of bound variables now have to keep exactly the
type.
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Application
(s :: S1 → S2 t :: S1) 7→ S2

Constructor expressions
(c :: (S1 → . . . → Sn → S) s1 :: S1 . . . sn :: Sn) 7→ S

Abstractions
(λx :: S1.s :: S2) 7→ S1 → S2

Case-expression
(caseK s :: S ((cK,1 x1,1 . . . x1,n1) :: S -> t1 :: T )

. . .
((cK,m xm,1 . . . xm,nm) :: S -> tm :: T ))

9=; 7→ T

Fig. 1. Computation of MonoTp

Example 2.7. This example shows a type-labeled expression that may appear
in the definition of a function symbol. The type of the composition is (.) ::
∀a, b, c.(b → c) → (a → b) → a → c. A type labeling (the types of some variables
are not repeated) for the composition may be:

(λf :: (b → c).(λg :: (a → b).
(λx :: a.(f (g x) :: b) :: c) :: (a → c)) :: ((a → b) → a → c))

:: ∀a, b, c.(b → c) → (a → b) → a → c

An illustration is as follows:

λ

uukkkkkkkkk

''NNNNNNNN :: ∀a, b, c.(b → c) → (a → b) → a → c

f :: b → c λ

wwoooooo

##GGG
GGG
:: (a → b) → a → c

g :: a → b . . .

Type-Constraints:

1. The type-label of a variable x ∈ VT is its built-in type T .
2. Function symbols f are labeled with a type that is an instance of the poly-

morphic type of the equation f = df .
3. The label S of a constructor c must be an instance of the predefined type of

c.
4. In the definition f = df , where ∀X .T is the type of the definition f = df ,

the type label of df is T and any symbol g in df can only have type variables
that also occur in X .

5. The type-label of every compound expression must be derivable using the
rules of MonoTp defined in figure 1 based on the type labels of the subex-
pressions.

Definition 2.8. If an expression t :: T satisfies all the type constraints above,
then we call the type labeling admissible, and the expression t :: T well-typed.



8 David Sabel and Manfred Schmidt-Schauß

(beta) R[((λx.s) v)] → R[s[v/x]]

(delta) R[f :: T ] → R[df ] if f = df :: T ′ for the function symbol f
The reduction is accompanied by a type instantiation
ρ(df ), where ρ(T ′) = T

(case) R[(case (c v1 . . . vn) . . . ((c y1 . . . yn) -> s) . . .)]
→ R[s[v1/y1, . . . , vn/yn]]

Fig. 2. Standard Reduction rules

Definition 2.9. We say a program P ′ extends the program P, if P ′ is a pro-
gram that may add type constructors, together with their data constructors, and
function symbols together with their definitions, and where the type labels of the
definitions of P are the same in P ′.

3 Operational Semantics

For the definition of the standard reduction → we require the notion of reduction
contexts. For a fixed program P the P-Reduction contexts R are defined by the
following grammar:

R ::= [·] | (R s) | (v R) | case R of alts | (c v1 . . . vi R si+2 . . . sn)

where s, si are P-expressions and v, vi are P-values. Standard reduction rules
are defined in figure 2, without mentioning types.

Definition 3.1. The evaluation of an expression t is a maximal reduction se-
quence consisting of standard-reductions. We say that an expression s terminates
(or converges) iff s reduces to an value by its evaluation, denoted by s ↓. Other-
wise, we say s diverges, denoted by s⇑.

Note that for every expression, there is at most one standard reduction possible.
It is easy to see that reduction of expressions keeps the type of the expressions.
Hence reduction will not lead to dynamic type errors:

Lemma 3.2 (Type Safety). Reducing t :: T by standard reduction leaves the
term well-typed and does not change the type. I.e. t → t′ implies that t′ is well-
typed and t′ :: T .

Lemma 3.3 (Progress Lemma). A closed and well-typed expression without
reduction is a value.

3.1 Assumptions on Valid Programs

Assumption 3.4. We assume that for every type T of the program P there is
at least one closed value of type T .
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Remark 3.5. This excludes types like the following: Let Foo by a type with one
constructor foo : Foo → Foo. The only potentially closed expressions would
be an infinitely nested expression foo(foo(. . .)), which of course does not exist.
Hence there is no closed value of type Foo.

Assumption 3.6. We assume that every program P contains for every type τ
a closed diverging expression, denoted as ⊥τ .

This could be achieved by defining f as f = (λx.f x) : ∀a, b.a → b, then the
expression (f v)τ does not converge, where v is any closed value.
The latter assumption e.g. allows to construct the value λx.⊥, hence for every
ground function type, there is a closed value. This assumption also would allow
us to weaken Assumption 3.4.

3.2 Equivalence of Expressions

The conversion relation defined by the reductions (beta), (case) and (delta)
in every context is too weak to justify sufficiently many equations. So we will
observe termination in all contexts. For the definition of contextual equivalence,
we will also need to take all program extensions into account.

Definition 3.7. Given a program P. Let s, t be two P-expressions of (ground)
type T . Then
s ≤P∀,T t iff for all programs P ′ that extend P, and all P ′-contexts C[· :: T ]: if
C[s], C[t] are closed, then C[s] ↓ =⇒ C[t] ↓, and
s ∼P∀,T t iff s ≤P∀,T t and t ≤P∀,T s.
If contexts C[·] are restricted to be P-contexts, then we denote the relations as
≤P,T and ∼P,T .

Lemma 3.8. ≤P,T and ≤P∀,T are precongruences, and ∼P,T and ∼P∀,T are
congruences.

Proof. It is sufficient to show this for a fixed P, and to prove the first two
claims on precongruences. First we prove that ≤T is transitive. Let s, r, t be
expressions of type T with s ≤T r ≤T t. Let C[· :: T ] be a context such that
C[s], C[t] are closed and such that C[s] ↓. We have to show that C[t] ↓. Let
{x1, . . . , xn} = FV (r) \ (FV (s) ∪ FV (t)). Let D := (λx1, . . . , xn.C[·]) v1 . . . vn

be a context, where vi are closed values of the same type as xi for i = 1, . . . , n.
By our assumption on programs, for every type T , there exists at least one value.
Obviously, D[s] ↓, since D[s] ∗−→ C[s]. Since D[r] is closed, we also have D[r] ↓
and also D[t] ↓. Since reduction is deterministic and D[t] ∗−→ C[t], we also obtain
C[t] ↓.
Now we show that ≤T is compatible with contexts. Let s, t be expressions of
type T , and let C[· :: T ] :: t′ be a context. Now let D be any context, such
that D[C[s]] and D[C[t]] are closed and D[C[s]] ↓. This implies D[C[t]] ↓, hence
C[s] ≤T ′ C[t].
By standard arguments, this also holds for ≤P∀,T .
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Example 3.9. Note that in call-by-value calculi there is a difference between
looking for termination in all contexts vs. termination in closing contexts.
The ≤P,T -relation defined for closing contexts is different from the relation ≤′P,T

defined for all contexts: Assume the usual definition of lists, and let s = Nil, t =
(case x of Cons y z -> Nil; Nil -> Nil). Then s 6≤′P,T t, since t does not converge:
it is irreducible and not a value. However, it is not hard to verify, using induction
on the number of reductions, that s ∼P,T t for our definition using closing
contexts.

A program transformation T is a binary relation on P-expressions, where (s, t) ∈
T always implies that s and t are of the same type. A program transformation T
is correct iff for all (s, t) ∈ T of type T the equation s ∼P,T t holds. A program
transformation T is globally correct iff for all (s, t) ∈ T of type T the equation
s ∼P∀,T t holds.

4 Context Lemma for Programs

In this section we show that a so-called CIU-Theorem (for other calculi see
e.g. [MT91,FH92]) holds, which allows easier proofs of contextual equivalence,
i.e. it is sufficient to take only reduction contexts and closing value substitutions
into account, in order to show contextual equality. In order to prove a CIU-
Lemma, we first have to prove a context lemma for L. extended with a let. In
the following we assume that a fixed program P is given. We are interested in the
contextual semantics of P-expressions. However, we will also look for extensions
P ′ of P and for the relation ≤P∀,T .

4.1 Context Lemma for a Sharing Extension

We consider the let-language Llet that is an extension of our language that shares
values using the expression syntax:

E ::= V | F | (E E) | λV.E | (ci E1 . . . Ear(ci))
| (caseK E Alt1 . . . Altn) where n = |DK |
| (let V = W in E)

Alti ::= ((ci V1 . . . Var(ci)) ->E)

where W stands for values, i.e. W ::= V | (c W1 . . . WN ) | λV.E. The let-
construct is non-recursive, i.e. the scope of x in (let x = v in s) is only s.
Now we use a label-shift to determine the reduction contexts: With (lll) we
denote the union of the rules (lapp), (lrapp), (lcapp), and (lcase).
The type-constraints for the let-construct are as follows: in (let x = v in s),
the type labels of x, v must be identical, and the type label of s is the same as
for the let-expression, i.e. only (let x :: T1 = v :: T1 in s :: T2) :: T2 is a correct
typing.
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(s t)sub∨lr → (ssub t) if s is not a value

(vsub s) → (v ssub)

(c s1 . . . sn)sub∨lr → (c ssub
1 . . . sn)

(c v1 . . . vsub
i si+1 . . . sn) → (c v1 . . . vi ssub

i+1 . . . sn)

(case s alts)sub∨lr → (case ssub alts)

(let x = v in s)lr → (let x = v in slr)

Shifting starts with tlr, where t has no other occurrences of labels sub, lr.
We assume that the label is not removed during the label shift; In the rules above, only
the new label is shown.

Fig. 3. Searching the redex in the let-language Llet

(betalet) C[((λx.s)sub v)] → C[let x = v in s]

(deltalet) C[f sub :: T ] → C[df ] if f = df :: T ′ for the function symbol f .
The reduction is accompanied by a type instantiation
ρ(df ), where ρ(T ′) = T

(caselet) C[(case (c v1 . . . vn)sub . . . ((c y1 . . . yn) -> s) . . .)]
→ C[let y1 = v1 in . . . let yn = vn in s]

(cp) C[let x = v in C′[xsub]] → C[let x = v in C′[v]]

(lapp) C[((let x = v in s)sub t)] → C[(let x = v in (s t))]

(lrapp) C[(v1 (let x = v in t)sub)] → C[(let x = v in (v1 t))]

(lcapp) C[(c v1 . . . vi−1 (let x = v in si)
sub si+1 . . . sn)]

→ C[(let x = v in (c v1 . . . vi−1 si . . . sn))]

(lcase) C[(case (let x = v in s)sub alts)]
→ C[(let x = v in (case s alts))]

Fig. 4. Standard Reduction rules in the let-language Llet

We denote a reduction as t
ls−→ t′ (standard-let-reduction), and write t

ls,a−−→ t′ if
we want to indicate the kind a of the reduction.
Values are expressions x, λx.s, or (c s1 . . . sn), where si are variables or values.
The answers of reductions are values but not variables that may be embedded in
lets. I.e., expressions of the form (let x1 = v1 in (let x2 = v2 in . . . (let xn =
vn in v) . . .)) where v is a value, but not a variable. We say an expression t

converges, denoted as t ↓ iff there is a reduction t
ls,∗−−→ t′, where t′ is an answer.

The contexts C that we allow in the language may have their holes at the usual
positions where an expression is permitted; if it is in v of (let x = v in t),
then the hole must be within an abstraction of v. Contextual approximation
and contextual equivalence for Llet are defined accordingly, where we use the
symbols ≤let,T and ∼let,T for the corresponding relations. Now we can show the
context lemma for Llet :
A reduction context R[·] for Llet is a context, where the sub-shifting will end
successfully at the hole. Note that the hole cannot occur as (let x = [·] in t).
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4.2 Context Lemmas in the let-Language

For a reduction sequence RED the function rl(RED) computes the length of
the reduction sequence RED.

Definition 4.1. For well-typed expressions s, t :: T , the inequation s ≤let,R,T t
holds iff for all ρ where ρ is a variable-permutation such that variables are
renamed, the following holds: ∀R[· :: τ ]: if R[ρ(s)], R[ρ(t)] are closed, then
(R[ρ(s)] ↓ =⇒ R[ρ(t)] ↓))

We require the notion of multicontexts, i.e. expressions with several (or no) typed
holes ·i :: Ti, where every hole occurs exactly once in the expression. We write
a multicontext as C[·1 :: T1, . . . , ·n :: Tn], and if the expressions si :: Ti for
i = 1, . . . , n are placed into the holes ·i, then we denote the resulting expression
as C[s1, . . . , sn].

Lemma 4.2. Let C be a multicontext with n holes. Then the following holds:
If there are expressions si :: Ti with i ∈ {1, . . . , n} such that C[s1, . . . , si−1, ·i ::
Ti, si+1, . . . , sn] is a reduction context, then there exists a hole ·j, such that for all
expressions t1 :: T1, . . . , tn :: Tn C[t1, . . . , tj−1, ·j :: Tj , tj+1, . . . , tn] is a reduction
context.

Proof. Let us assume there is a multicontext C with n holes and there are
expressions s1, . . . , sn such that C[s1, . . . , si−1, ·i :: Ti, si+1, . . . , sn] is a reduction
context. Applying the labeling algorithm to the multi-context C alone will hit
hole number j, perhaps with i 6= j. Then C[t1, . . . , tj−1, ·j :: Tj , tj+1, . . . , tn] is a
reduction context for any expressions ti.

Lemma 4.3 (Context Lemma). The following holds:
≤let,R,T ⊆ ≤let,T

Proof. We prove a more general claim:
For all n ≥ 0 and for all multicontexts C[·1 :: T1, . . . , ·n :: Tn] and for all well-
typed expressions s1 :: T1, ..., sn :: Tn and t1 :: T1, ..., tn :: Tn:
If for all i = 1, . . . , n: si ≤let,R,T ti, and if C[s1, . . . , sn] and C[t1, . . . , tn] are
closed, then C[s1, . . . , sn]↓ =⇒ C[t1, . . . , tn]↓.
The proof is by induction, where n, C[·1 :: T1, . . . , ·n :: Tn], si :: Ti, ti :: Ti for
i = 1, . . . , n are given. The induction is on the measure (l, n), where

– l is the length of the evaluation of C[s1, . . . , sn].
– n is the number of holes in C.

We assume that the pairs are ordered lexicographically, thus this measure is
well-founded. The claim holds for n = 0, i.e., all pairs (l, 0), since if C has no
holes there is nothing to show.
Now let (l, n) > (0, 0). For the induction step we assume that the claim holds for
all n′, C ′, s′i, t

′
i, i = 1, . . . , n′ with (l′, n′) < (l, n). Let us assume that the pre-

condition holds, i.e., that ∀i : si ≤let,R,T ti. Let C be a multicontext and RED
be the evaluation of C[s1, . . . , sn] with rl(RED) = l. For proving C[t1, . . . , tn]↓,
we distinguish two cases:



A Constructive Logic for Functional Programs 13

– There is some index j, such that C[s1, . . . , sj−1, ·j :: Tj , sj+1, . . . , sn]
is a reduction context. Lemma 4.2 implies that there is a hole ·i
such that R1 ≡ C[s1, . . . , si−1, ·i :: Ti, si+1, . . . , sn] and R2 ≡
C[t1, . . . , ti−1, ·i :: Ti, ti+1, . . . , tn] are both reduction contexts. Let C1 ≡
C[·1 :: T1, . . . , ·i−1 :: Ti−1, si, ·i+1 :: Ti+1, . . . , ·n :: Tn]. From C[s1, . . . , sn] ≡
C1[s1, . . . , si−1, si+1, . . . , sn] we derive that RED is the evaluation of
C1[s1, . . . , si−1, si+1, . . . , sn]. Since C1 has n − 1 holes, we can use
the induction hypothesis and derive C1[t1, . . . , ti−1, ti+1, . . . , tn] ↓, i.e.
C[t1, . . . , ti−1, si, ti+1, . . . , tn] ↓. This implies R2[si] ↓. Using the precondi-
tion we derive R2[ti]↓, i.e. C[t1, . . . , tn]↓.

– There is no index j, such that C[s1, . . . , sj−1, ·j :: Tj , sj+1, . . . , sn] is a re-
duction context. If l = 0, then C[s1, . . . , sn] is an answer and since no hole is
in a reduction context, C[t1, . . . , tn] is also an answer, hence C[t1, . . . , tn]↓.
If l > 0, then the first normal order reduction of RED can also be used
for C[t1, . . . , tn]. This normal order reduction can modify the context C, the
number of occurrences of the expressions si, the positions of the expressions
si, and si may be renamed by a (cp) reduction.
We now argue that the elimination, duplication or variable permutation
for every si can also be applied to ti. More formally, we will show if
C[s1, . . . , sn]

ls,a−−→ C ′[s′1, . . . , s
′
m], then C[t1, . . . , tn]

ls,a−−→ C ′[t′1, . . . , t
′
m], such

that s′i ≤T ′,↓,R t′i. We go through the cases of which reduction step is applied
to C[s1, . . . , sn] to figure out how the expressions si (and ti) are modified by
the reduction step, where we only mention the interesting cases.
• For a (lapp), (lrapp), (lcapp), (lcase), and (betalet) reduction, the holes
·i may change their position.

• For a (caselet) reduction, the position of ·i may be changed as in the
previous item, or if the position of ·i is in an alternative of case, which
is discarded by a (case)-reduction, then si and ti are both eliminated.

• If the reduction is a (cp) reduction and there are some holes ·i inside the
copied value, then there are variable permutations ρi,1, ρi,2 with s′i =
ρi,1(si) and t′i = ρi,2(ti). One can verify that we may assume that ρi,1 =
ρi,2 for all i. Now the precondition implies s′i ≤let,R,T t′i.

• If the standard reduction is a (deltalet)-reduction, then si, ti cannot be
influenced, since within df , there are no holes.

Now we can use the induction hypothesis: Since C ′[s′1, . . . , s
′
m] has a ter-

minating sequence of standard reductions of length l − 1 we also have
C ′[t′1, . . . , t

′
m]↓. With C[t1, . . . , tn]

ls,a−−→ C ′[t′1, . . . , t
′
m] we have C[t1, . . . , tn]↓.

4.3 The CIU-Theorem

Now we use the context lemma for the let-language Llet and transfer the results
to our language L using the method in [SSNSS08]. Let Φ be the translation
from L to Llet defined as the identity, that translates expressions, contexts and
types. This translation is obviously compositional, i.e. Φ(C[s]) = Φ(C)[Φ(s)]. We
also define a backtranslation Φ from Llet into L. The translation is defined as
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Φ(let x = v in s) := Φ(s)[Φ(v)/x] for let-expressions and homomorphic for all
other language constructs. The types are translated in the obvious manner. For
extending Φ to contexts, the range of Φ does not consist only of contexts, but of
contexts plus a substitution which “affects” the hole, i.e. for a context C, Φ(C)
is C ′[σ[]] where C ′ = Φ

′
(C) where Φ

′
treats contexts like expressions (and the

context hole is treated like a constant).
With this definition Φ satisfies compositionality, i.e. Φ(C)[Φ(s)] = Φ(C[s]) holds.
The difference to the usual notion is that Φ(C) is not a context, but a function
mapping expressions to expressions.
The important property to be proved for the translations is convergence equiv-
alence, i.e. t ↓ ⇐⇒ Φ(t) ↓, and t ↓ ⇐⇒ Φ(t) ↓, resp.
By inspecting the (ls,lll)- and (ls,cp)-reductions and the Definition of Φ the
following properties are easy to verify:

Lemma 4.4. Let t ∈ Llet and t
ls,lll−−−→ t′ or t

ls,cp−−−→ t′. Then Φ(t′) = Φ(t).

Furthermore, all reduction sequences consisting only of of
ls,lll−−−→ and

ls,cp−−−→ are
finite.

Lemma 4.5. Let t be a expression of Llet such that Φ(t) = R[s], where (ls,cp)-
and (ls,lll)-reductions are not applicable to t, and R is a reduction context. Let
t be represented as t = let x1 = s1, . . . , xn = sn in t1 where t1 is not a let-
expression. Then there is some reduction context R′ and a expression s′, such
that t1 = R′[s′], R = Φ(σ(R′)), s = Φ(σ(s′)) and R[s] = Φ(σ(R′[s′]), where
σ = {x1 7→ s1} ◦ . . . ◦ {xn 7→ sn}. Furthermore, let x1 = s1, . . . , xn = sn in R′

is a reduction context in Llet.

Proof. It is easy to see that there exists a context R′ and an expression s′, such
that R = Φ(σ(R′)) and s = Φ(σ(s′)). We have to show that R′ is a reduction
context of Llet. Let M be a multicontext such that R′ = M [r1, . . . , ·, , . . . , rk]
such that ri are all the maximal subexpressions in non-reduction position of
R′. Since neither let-shifting nor copy reductions are applicable to t, we have
that Φ(σ(R′)) = R = M [Φ(σ(r1), . . . , ·, . . . , Φ(σ(rk)]. Since the hole in R is
in reduction position, this also holds for R′, i.e. R′ is a reduction context.
By the construction of reduction contexts in Llet it is easy to verify that
let x1 = s1, . . . , xn = sn in R′[] is also a reduction context.

Lemma 4.6. Let t be a Llet expression such that no (ls,lll)-, or (ls,cp)-
reductions are applicable to t. If Φ(t) → s then there exists some t′ such that
t → t′ and Φ(t′) = s.

Proof. Since neither (ls,lll)- nor (ls,cp)-reductions are applicable to t,
the expression t is either a non-let expression t1 or of the form
let x1 = s1, . . . , xn = sn in t1 where t1 is a non-let expression. Let σ = {x1 7→
s1} ◦ . . . ◦ {xn 7→ sn} in the following.
We treat the (beta)-reduction in detail, and omit the details for (case)- and
(delta)-reductions, since the proofs are completely analogous. Hence, let Φ(t) → s
by a (beta)-reduction. I.e., Φ(t) = R[(λx.r) v] → R[r[v/x]] = s. Then there exists
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a context R′ and expressions r0, v0, such that R = Φ(σ(R′)), r = Φ(σ(r0)),
v = Φ(σ(v0)). Since no (ls,cp)- and (ls,lll)- reductions are applicable to t we also
have that t = let x1 = s1, . . . , xn = sn in R′[(λx.r0) v0]. Lemma 4.5 shows that
let x1 = s1, . . . , xn = sn in R′[] is a reduction context of Llet. The expression
v0 must be a value, since v is a value and no (ls,lll)- and no (ls,cp)-reductions
are applicable to t.
Hence, we can apply a (betalet)-reduction to t:

let x1 = s1, . . . , xn = sn in R′[(λx.r0) v0]
ls,betalet−−−−−−→

let x1 = s1, . . . , xn = sn in R′[let x = v0 in r0]. Now it is easy to verify
that Φ(t′) = s holds.

Lemma 4.7. The following properties hold:

1. For all t ∈ Llet: if t is an answer, then Φ(t) is a value for L, and if Φ(t) is

a value (but not a variable), then t
ls,∗−−→ t′ where t′ is an answer for Llet

2. For all t ∈ L: t is a non-variable value iff Φ(t) is an answer for Llet.
3. Let t1, t2 ∈ Llet with t1

ls−→ t2. Then either Φ(t1) = Φ(t2) or Φ(t1) → Φ(t2)

4. Let t1 ∈ Llet with Φ(t1) → t′2. Then t1
ls,+−−−→ t2 with Φ(t2) = t′2.

Proof. Part 1 and 2 follow by definition of values and answers in L and Llet and
the definitions of Φ, Φ. Note that it may be possible that Φ(t) is a value, but for
t some (ls,lll)- or (ls,cp)- reductions are necessary to obtain an answer in Llet.
3: If the reduction is a (ls,lll) or (ls,cp), then Φ(t1) = Φ(t2). If the reduction is a
(betalet), (deltalet), or (caselet), then Φ(t1) → Φ(t2) by the reduction with the
same name. Part 4 follows from Lemma 4.4 and 4.6.

Lemma 4.8. Φ and Φ are convergence equivalent.

Proof. We have to show four parts:

– t ↓ =⇒ Φ(t) ↓: This follows by induction on the length of the evaluation of
t. The base case is shown in Lemma 4.7, part 1. The induction step follows
by Lemma 4.7, part 3.

– Φ(t) ↓ =⇒ t ↓: We use induction on the length of the evaluation of Φ(t). For
the base case Lemma 4.7, part 1 shows that if Φ(t) is an (non-varialbe) value,
then t ↓. For the induction step let Φ(t) → t′ such that t′ ↓. Lemma 4.7,

part 4 shows that t
ls,+−−−→ t′′, such that Φ(t′′) = t′. The induction hypothesis

implies that t′′ ↓ and thus t ↓.
– t ↓ =⇒ Φ(t) ↓: This follows by induction on the length of the evaluation

of t. The base case follows from Lemma 4.7, part 2. For the induction step
let t

a−→ t′, where t′ ↓ and a ∈ {(beta), (delta), (case)}. If a = (delta) then

Φ(t)
ls,deltalet−−−−−−→ Φ(t′), and hence the induction hypothesis shows Φ(t′) ↓ and

thus Φ(t) ↓. For the other two cases we have Φ(t)
ls,a−−→ t′′, with Φ(t′′) = t′.

The second part of this proof shows that t′ ↓ implies t′′ ↓. Hence, Φ(t) ↓.
– Φ(t) ↓ =⇒ t ↓: This follows, since the first part of this proof shows Φ(t) ↓

implies Φ(Φ(t)) ↓, and since Φ(Φ(t)) = t.
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The framework in [SSNSS08] shows that convergence equivalence and composi-
tionality of Φ imply adequacy, i.e.:

Corollary 4.9 (Adequacy of Φ). Φ(s) ≤let,T Φ(t) =⇒ s ≤T t.

Lemma 4.10 (CIU-Lemma). Let s, t :: T be two expressions of L such
that for all value substitutions σ and for all reduction contexts R, such that
R[σ(s)], R[σ(t)] are closed, the implication R[σ(s)] ↓ =⇒ R[σ(t)] ↓ is valid.
Then s ≤T t holds.

Proof. Let R[σ(s)] ↓ =⇒ R[σ(t)] ↓ hold for all value substitutions σ and reduc-
tion contexts R, such that R[σ(s)], R[σ(t)] are closed. We show that Φ(s) ≤let,R,T

Φ(t) holds. Then the context lemma 4.3 shows that Φ(s) ≤let,T Φ(t) and the pre-
vious corollary implies s ≤T t.
Let Rlet be a reduction context in Llet such that Rlet [Φ(s)] and Rlet [Φ(t)] are
closed and Rlet [Φ(s)] ↓. We extend the translation Φ to reduction contexts: For
reduction contexts Rlet that are not a let-expression, Φ(Rlet) is defined anal-
ogous to the translation of expressions. For Rlet = let x1 = v1 in (let x2 =
v2 in (. . . (let xn = vn in R′let)))) where R′let is not a let-expression we define
Φ(Rlet) = Φ(R′let)[σ(·)], where σ := σn is the substitution defined inductively by
σ1 = {x1 7→ v1}, σi = σi−1 ◦ {xi 7→ vi}.
Since Rlet [Φ(s)] ↓ and Φ(Rlet [Φ(s)]) = R′[σ(Φ(Φ(s)))] = R′[σ(s)] where R′ is a
reduction context for L and σ is a value substitution, convergence equivalence of
Φ shows R′[σ(s)] ↓. Since R′[σ(s)] and R′[σ(t)] are closed, the precondition of the
lemma now implies R′[σ(t)] ↓. Since R′[σ(t)] = R′[σ(Φ(Φ(t)))] = Φ(Rlet [Φ(t)])
and since Φ is convergence equivalent, we have R[Φ(t)] ↓.

Proposition 4.11. The transformation (beta), (delta), and (case) are correct
program transformations in L.

Proof. We use the CIU-Lemma 4.10: Let a ∈ {(beta), (delta), (case)}. Let s
a−→ t,

R be a reduction context, and σ be a value substitution, such that R[σ(s)] is
closed. If R[σ(t)] ↓, then R[σ(s)] a−→ R[σ(t)] by a standard reduction, and thus
R[σ(s)] ↓.
For the other direction let R[σ(s)] ↓, i.e. R[σ(s)] → t1

∗−→ tn where tn is a value.
Since standard reduction is unique one can verify that then R[σ(s)] a−→ R[σ(t)] =
t1 must hold, i.e. R[σ(t)] ↓.

Note that ordinary (i.e. call-by-name) beta-reduction may be incorrect, for ex-
ample (λx.True) Bot is equivalent to Bot :: Bool, however, using a call-by-name
beta-reduction results in True, which is obviously not equivalent to Bot.

Theorem 4.12 (CIU-Theorem). For P-expressions s, t :: τ : R[σ(s)] ↓ =⇒
R[σ(t)] ↓ for all P-value substitutions σ and P-reduction contexts R where
R[σ(s)], R[σ(t)] are closed if, and only if s ≤P,T t holds.

Proof. One direction is the CIU-Lemma 4.10. For the other direction, let s ≤T t
hold and R[σ(s)] ↓ for a value substitution σ = {x1 7→ v1, . . . , xn 7→ vn},
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where σ(s), σ(t) are closed, and let R be a reduction context. Since (beta) is
a correct program transformation, we have R[(λx1. . . . .xn.s) v1 . . . vn] ∼T

R[σ(s)]. Thus, R[(λx1. . . . .xn.s) v1 . . . vn] ↓ and applying s ≤T t we derive
R[(λx1. . . . .xn.t) v1 . . . vn] ↓. Using correctness of (beta) once more shows
R[σ(t)] ↓.

Applied to extensions P ′ of P, we obtain the following corollary:

Corollary 4.13. Let P be a program. For P-expressions s, t :: τ : R[σ(s)] ↓ =⇒
R[σ(t)] ↓ for all extensions P ′ of P and all P ′-value substitutions σ and P ′-
reduction contexts R where R[σ(s)], R[σ(t)] are closed if, and only if s ≤P∀,T t
holds.

4.4 Local CIU-Theorems

In this subsection the CIU-theorem can be made stronger by restricting R and
σ to be free of function symbols from F .
Let an F-free expression, value, or context be an expression, value, or context
that is built over the language without function-symbols, but where ⊥-symbols
of every type are allowed according to Assumption 3.6.
We will use the lambda-depth-measure for subexpression-occurrences s of some
expression t: it is the number of lambda’s and pattern-alternatives that are
crossed by the position of the subexpression.

Lemma 4.14 (CIU-Lemma F-free). Let s, t :: T be two expressions of L such
that for all F-free value substitutions σ and all F-free reductions contexts R such
that R[σ(s)], R[σ(t)] are closed: R[σ(s)] ↓ =⇒ R[σ(t)] ↓. Then s ≤T t holds.

Proof. We show that the condition of this lemma implies the precondition of the
CIU-lemma.
Let s, t :: T be two expressions of L such that for all F-free value substitu-
tions σ and all F-free reductions contexts R where R[σ(s)], R[σ(t)] are closed:
R[σ(s)] ↓ =⇒ R[σ(t)] ↓. Let R be any reduction context and σ be any value
substitution such that R[σ(s)], R[σ(t)] are closed, and assume R[σ(s)] ↓. Let n
be the number of reductions of R[σ(s)] to a value. We construct F-free reduction
contexts R′ and F-free value substitutions σ′ as follows: apply n + 1 times a
delta-step for every occurrence of function symbol in R and σ. As a last step,
replace every remaining function symbol by ⊥ of the appropriate type. Note
that a single reduction step can shift the bot-symbols at most one lambda-level
higher. By standard reasoning and induction, we obtain that R′[σ′(s)] ↓, by us-
ing the reduction sequence of R[σ(s)] also for R′[σ′(s)], where the induction is
by the number of reduction steps. The assumption now implies that R′[σ′(t)] ↓,
We have R′[σ′(t)] ≤T R[σ(t)], since delta-reduction is correct and the insertion
of ⊥ makes the expression smaller w.r.t. ≤c. Hence R[σ(t)] ↓. Then we can use
the CIU-Theorem 4.12.



18 David Sabel and Manfred Schmidt-Schauß

Theorem 4.15 (CIU-Theorem F-free). For s, t :: τ ∈ L: R[σ(s)] ↓ =⇒
R[σ(t)] ↓ for all F-free value substitutions σ and F-free reduction contexts R,
where R[σ(s)], R[σ(t)] are closed if, and only if s ≤τ t holds.

Proof. One direction is the F-free CIU-Lemma 4.14. The other direction is the
same as in the proof of the CIU-theorem.

Corollary 4.16. Let s, t :: τ ∈ L. If for all closing F-free value substitutions σ,
we have σ(s) ≤τ σ(t), then s ≤τ t.

Proof. Follows from the F-free CIU-theorem 4.15.

Corollary 4.17. Let s, t :: τ ∈ L. If for all closing F-free value substitutions σ,
σ(s) and σ(t) reduce to the same value using standard-reduction, then s ∼τ t.

Proof. Follows from the F-free CIU-theorem 4.15, since reduction of R[σ(s)]
(respectively R[σ(t)] first evaluates the expressions σ(s) (respectively σ(t)).

Note that adequacy of the translation Φ could not be derived as in Corollary
4.9), since Φ is not compositional in the usual sense: the image of a context may
be a context together with a substitution for the hole. In the proof below we will
use a custom-tailored variant of compositionality.

Theorem 4.18 (Adequacy of Φ). Φ(s) ≤T Φ(t) =⇒ s ≤let,T t.

Proof. We use the framework in [SSNSS08,SSNSS09] that shows that conver-
gence equivalence and compositionality of Φ imply adequacy. It is easy to see
that Φ(C[s]) ∼T Φ(C)[Φ(s)]), if we admit that Φ(C) = C ′[σ(·)], where C ′ = Φ(C)
and the hole is considered a constant, and σ is the substitution that is derived
from all the let-bindings that have the hole in their scope. Thus adequacy im-
plies that Φ(s) ≤′T Φ(t) =⇒ s ≤let,T t, where ≤′T is defined using all ob-
servers D[σ(·)] and using also the closedness condition. However, since (beta)
is correct in L by Proposition 4.11, the relation ≤′T is the same as ≤T , since
D[σ(r)] ∼T D[λx1, . . . xn.[r]) v1 . . . vn] for all expressions r of the appropriate
type.

4.5 Properties of Ω-Expressions

Definition 4.19. We say an expression s is an Ω-expression iff for all value
substitutions σ where σ(s) is closed, σ(s)⇑ holds. The symbol Bot, labeled with
a type, is used as a representative (i.e. a meta-symbol) for any Ω-expression of
the corresponding type.

We can show that the property of being an Ω-expression inherits to reduction
contexts:

Proposition 4.20. Let s :: τ be an Ω-expression. Then for every reduction
context R[· :: τ ], the expression R[s] is an Ω-expression.
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Proof. This follows by structural induction of R. If R is the empty context
then the claim obviously holds. For the induction step there exists a context
R1 with R = R1[([·] t)], R = R1[(v [·])], R = R1[(case [·] alts)], or R =
R1[(c v1 . . . vi [·] si+1 . . . sn)].
It is easy to verify that for any closing value substitution σ the expression
σ(s t), σ(v s), σ(case s alts), or σ(c v1 . . . vi s si+1 . . . sn), respectively,
cannot be evaluated to a value, since σ(s)⇑. Hence, (s t), (v s), (case s alts), or
(c v1 . . . vi s si+1 . . . sn), respectively, is an Ω-expression. Thus, the induction
hypothesis can be applied to R1 which shows that R[s] is an Ω-expression.

Corollary 4.21. Let s, t :: τ and let s be an Ω-expression. Then s ≤τ t. If also
t is an Ω-expression, then s ∼τ t.

Proof. We only prove s ≤τ t, since the other direction is symmetric. We use
the CIU-Theorem 4.12: Let R be a reduction context, σ be a value substitution
such that σ(s), σ(t) are closed. Then σ(s) must be an Ω-expression, and by
Proposition 4.20 R[σ(s)] is an Ω-expression, too. Thus R[σ(s)]⇑, and s ≤τ t
holds. The second claim follows by symmetry.

5 Recognizing Equality of Expressions

This section proves criteria for equality of expressions that are easier to use than
the definition of contextual equality. In particular, it is shown that equality is
conservative w.r.t. extending programs. Later we will also show that applicative
simulation methods can be applied using Howe’s proof technique ([How89]). We
say an expression or a context is F -free if only the symbol ⊥, but no further
function symbols from F occur.

Definition 5.1. Let T be a constructed type. We say T is a singleton type, iff
for all closed values v1, v2 of type T , the equation v1 ∼ v2 holds.

Lemma 5.2. Let x, y be different variables of type T . Then x ∼ y iff T is a
singleton type.

Proof. If T is a function type T1 → T2, then there is an abstraction λx.⊥T2 ,
as well as an abstraction λx.vT2 , where vT2 is a value of type T2, and we can
distinguish the variables x, y using the CIU-theorem. If T is a constructed type,
and there are two closed values v1 6∼ v2 of this type, then we can distinguish
the variables using σ1 = {x 7→ v1, y 7→ v2} and an appropriate context R1, and
σ1 = {x 7→ v2, y 7→ v1} and an appropriate context R2.

Lemma 5.3. Let s, t be (open) expressions of type T . Then s ≤T t iff for all
closing F-free value-substitutions σ: σ(s) ≤T σ(t).

Proof. If s ≤T t, then σ(s) ≤T σ(t) for closing value substitutions follows, since
beta-reduction is correct. The converse follows from the assumption and the
CIU-Theorem.
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Thus, it is sufficient to check equality of closed expressions.

Lemma 5.4. Let s, t be closed expressions of constructed type T . Then s ≤T t iff
s⇑ or s

∗−→ c v1 . . . vn and t
∗−→ c w1 . . . wn for some constructor c, and vi ≤P,Ti

wi

for i = 1, . . . , n.

Proof. If s ≤P,T t, then either s⇑, or s ↓, t ↓. Since T is a constructed type,
the result is a value with constructor of type T . Using case-expressions and the
correctness of (case)-reductions, the claim follows. The other direction holds,
since ≤P,T is a pre-congruence and due to Corollary 4.21.

Proposition 5.5. Let s, t be closed expressions of function type T . Then s ≤T t
iff s⇑ or s

∗−→ λx.s′ and t
∗−→ λx.t′ and s′[v/x] ≤T t′[v/x] for all closed F-free

values v.

Proof. If s ≤T t, then either s⇑, or s ↓, t ↓. Since T is a function type, the results
must be abstractions. The conclusion follows since ≤T is a congruence.
The other direction also holds, using Corollary 4.16 which implies s′ ≤T t′. Then
we can use the pre-congruence property.

Now we show that function symbols from F are not necessary in the contexts
to define the contextual ordering:

Definition 5.6. Let ≤¬FT be defined as follows for expressions s, t of equal type
T : s ≤¬FT t iff for all contexts C[· :: T ] that do not contain function symbols, but
may contain ⊥-expressions: if C[s], C[t] are closed, then C[s] ↓ =⇒ C[t] ↓.

Note that s, t may contain function symbols.

Proposition 5.7. ≤T = ≤¬FT .

Proof. It is sufficient to show that ≤¬FT ⊆ ≤T . Therefore, let s, t be expressions
of type T , let C be a context, such that C[s], C[t] are closed and C[s] ↓. We have
to show that C[t] ↓. Let n be the length of the reduction of C[t]. Let C¬F be the
context constructed from C as follows: apply n + 1 times the following step: a
delta-reduction for every occurrence of a function symbol. As a last step, replace
every remaining function symbol by ⊥ of the appropriate type. Note that a
single reduction step can shift the bot-symbols at most one lambda-level higher.
Thus, by standard reasoning and induction, we obtain that C¬F [s] ↓, by using
the reduction sequence of C[s] also for C¬F [s], where the induction is by the
number of reduction steps. The assumption now implies that C¬F [t] ↓. We have
C¬F [t] ≤T C[t], since delta-reduction is correct and the insertion of ⊥ makes
the expression smaller w.r.t ≤T . Hence C[t] ↓. ut

Corollary 5.8 (F-extensions). Let P be a program and P ′ be an extension of
P where only the set F is extended to F ′. Then for all P-expressions s, t :: T :

s ≤P,T t ⇐⇒ s ≤P′,T t and
s ∼P t ⇐⇒ s ∼P′ t

Proof. This follows from Proposition 5.7.
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Bot s → Bot

s Bot → Bot

caseK Bot . . . → Bot

caseK s (p1 → Bot) . . .
(pn → Bot)

→ Bot

(c . . . Bot . . .) → Bot

(seq t Bot) → Bot

(seq Bot t) → Bot

Fig. 5. Bot-reduction rules

seqc (seq (c s1 . . . sn) s) → seq s1 (. . . (seq sn s) . . .)
seqlam (seq (λx.s) t) → t
seqx (seq x s) → s
seqapp ((seq s1 s2) s3) → (seq s1 (s2 s3))
seqseq ((seq (seq s1 s2) s3) → (seq s1 (seq s2 s3))
caseseq (caseK (seq r s) alts) → (seq r (caseK s alts))
VNbeta ((λx.s) t) → seq t s[t/x]

VNcase

8<:
(caseK (c s1 . . . sn)

(c x1 . . . xn) -> t
. . .

9=; → seq s1 (. . . (seq sn t[s1/x1, . . . , sn/xn]))

Fig. 6. Adapted call-by-name-reduction rules

caseapp ((caseK t0 (p1 -> t1) . . . (pn -> tn)) r)
→ (caseK t0 (p1 -> (t1 r)) . . . (pn -> (tn r)))

casecase (caseK (caseK′ t0 (p1 -> t1) . . . (pn -> tn)) (q1 -> r1) . . . (qm -> rm))
→ (caseK′ t0 (p1 -> (caseK t1 (q1 -> r1) . . . (qm -> rm)))

. . .
(pn -> (caseK tn(q1 -> r1) . . . (qm -> rm))))

seqcase (seq (caseK t (q1 -> r1) . . . (qm -> rm)) r)
→ (caseK t (q1 -> (seq r1 r)) . . . (qm -> (seq rm r)))

Fig. 7. Case-Shifting Transformations

6 Localizing Values

In the following we intend to show that ≤T and ∼T do not change, when P is
extended to P ′. The technique is to show a CIU-Theorem for P that only uses
P-reduction contexts and P-value substitutions.

We want to show an analogue to the subexpression property of simply-typed
lambda-calculus: That irreducible expressions t only have subexpressions, whose
type can be composed of subtypes of the expression t. However, the usual notion
of call-by-value reduction is not sufficient: we need an extended set of reductions
in order to standardize the values of P-type, such that there are no further subex-
pressions that mention types of an extension. There are the following patterns,
where a type may be eliminated:
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– In (s t) :: b with s :: a → b and t :: a, the type a is eliminated.
– In (caseT s alts), the type of s is eliminated.
– In (seq s t), the type of s is eliminated

New types may be generated in the following constructions:

– In (c s1 . . . sn) where c introduces a P ′-type.
– In λx.s, the variable x may have a P ′-type.
– In (caseT s ((c x1 . . . xn) → r1) . . ., the pattern variables xi may introduce

a P ′-type, if T is a P ′-type.

In the following, we will add a seq-construct that always comes with two argu-
ments. The expression seq can be seen as an abbreviation for (λx, y.y), where
we assume that the seq is labelled such that it can be distinguished from other
lambda-abstractions. Note that the seq-construct will be used, since we deal
with subexpressions that contain free variables, and so the progress-Lemma is
not applicable. E.g. ((λx. . . .) (case y . . .)) may be irreducible, but not a value.
However, for the lemma below it is necessary to be able to apply a general kind
of beta-reduction to this expression. We also permit the symbol Bot, labeled
with a type, for Ω-expressions. The extended set of VN-reductions is in figures
5, 6 and 7.

Lemma 6.1. Let P be a program and P ′ be an extension of P. Let v be a closed
F-free P ′-value of closed P-type T , and assume that v

VN ,∗−−−→ v′, where v′ is
VN-irreducible. Then v′ is a closed F-free value such that every subexpression of
v′ has a P-type. In particular, v′ is a P-value.

Proof. We have assumed that there is a closed and VN-irreducible value v′ with
v

VN ,∗−−−→ v′. It is obvious that v′ is a value, since on the top level of v, there are
no potential reductions or transformations.
Assume for contradiction that there is a subexpression s1 of v′ of non-P-type.
We choose s1 as follows: It is not in the scope of a binder that binds a variable of
non-P-type. This is possible, since if s1 is within such a scope, then we can choose
another s′1 as follows: if it is a lambda-binder, then we choose the corresponding
abstraction. If the binding comes from a pattern in a case-expression, then the
case-expression is of the form caseT s′1 (c x1 . . . xn) → r . . ., where T is a P ′-type
and s1 is contained in r. In this case we choose s′1 as the next one. This selection
process terminates, since the binding-depth is strictly decreased. We arrive at
an expression that is not within the scope of a non-P-binder. Among these
expressions we choose an s1 that has maximal size. Note that s1 is irreducible.
We check all cases for the location of s1:

– s1 cannot be an argument of a constructor due to maximality.
– s1 cannot be the body of an abstraction due to maximality.
– s1 cannot be the second argument in seq due to maximality, but may be the

first argument in the seq-expression.
– s1 cannot be an argument in an application due to maximality, but may be

in function position.
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– s1 may be the first argument of a case, but not the result expression of an
alternative due to maximality.

Now we analyze the remaining cases:

– s1 is an application. Then s1 = s′1 s′2 . . . s′n with n ≥ 2, such that s′1 is
not an application. Obviously, s′1 is also of non-P-type. Now s′1 cannot be a
variable, since all bound variables above s1 have P-type. The expression s′1
can also not be an abstraction, Bot, a seq-expression, or a case-expression,
since v′ is irreducible. It cannot be a constructor application due to typing.
Hence this case is impossible.

– s1 is in function position in an application. Then there is an expression
s1 s2. By the previous item, s1 is not an application, and by assumption,
s1 s2 has P-type. Now s1 cannot be a variable, since all variables above
s1 have P-type. The expression s1 can also not be an abstraction, Bot, a
seq-expression, or a case-expression, since v′ is irreducible. It cannot be a
constructor application, due to typing. Hence this case is impossible.

– s1 is the first argument of a case for a non-P-type. Then s1 cannot be a
variable, since variables bound above have P-type. Also, s1 is neither of the
following: case-expression, Bot, constructor-expression, and seq-expression,
since v′ is irreducible. It cannot be an abstraction due to typing. Hence this
case is impossible.

– s1 is the first element of a seq. Irreducibility shows that it is neither an
abstraction nor a constructor application, a seq-expression, Bot, a case-
expression nor a variable. The expression s1 is not an application due to
previous items, hence this case is also impossible.

ut

6.1 VN-reductions: Approximating the Values

The goal of this subsection is to show that P-values and P-reduction contexts
are sufficient to check global contextual equality of P-expressions, i.e., The argu-
ments require several steps. Unfortunately, is not clear, whether VN-reduction
is (strongly) terminating (i.e. every reduction terminates): we could not find a
proof. Hence we have to use other methods to show that alien symbols are not
required in values or contexts.

Partial Termination of VN-Reduction We show that VN-reduction without
VN-beta- and VN-case -reductions terminates:
Therefore we use the following measure css of expressions:

css(case s (p1 → r1) . . . (pn → rn)) = 1 + 2css(s) + maxi=1,..,n(css(ri))
css(s t) = 1 + 2css(s) + 2css(t)
css(seq s t) = 2css(s) + css(t)
css(Bot) = 1
css(x) = 1
css(c s1 . . . sn) = 1 + css(s1) + . . . + css(sn)
css(λx.s) = 1 + css(s)
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(s t)VNS → (sVNS t)
(s t)VNS → (s tVNS )
(seq s t)VNS → (seq sVNS t)
(seq s t)VNS → (seq s tVNS )
(case s . . .)VNS → (case sVNS . . .)
(c s1 . . . sn)VNS → (c s1 . . . sVNS

i . . . sn)

Fig. 8. The VNS -label-shifting rules

Lemma 6.2. Every VN-reduction sequence without the (VNcase)- and
(VNbeta)-reduction steps is finite.

Proof. We check that for every possible reduction rule, the measure is strictly
decreased:

The reduction rules that reduce to Bot strictly reduce the measure.
seqc : reduces the size by 2.
seqlam,seqx : strictly reduce the size.
seqapp : 4css(s1)+2css(s2)+1+2css(s3) > 2css(s1)+2css(s2)+1+2css(s3).
seqseq : 4css(s1) + 2css(s2) + css(s3) > 2css(s1) + 2css(s2) + css(s3).
caseseq : 4css(r) + 2css(s) + a > 2css(r) + 2css(s) + a.
caseapp : 4css(t0) + 2 max(ti) + 2css(r) > 2css(t0) + max(2css(ti) + 2css(r)).
casecase : 4css(t0)+2max(css(ti))+max(css(ri)) > 2css(t0)+max(2css(ti)+

max(css(ri))).
seqcase : 4css(t) + 2 max(ri) + css(r) > 2css(t) + max(2css(ri) + css(r)).

Lemma 6.3. All VN-reduction rules are correct.

Proof. The bot-reduction rules are correct, which follows from the CIU-Theorem.
The other rules are also correct using Corollary 4.17, since the left and right
hand side will in any case reduce to the same value after applying a closing
value-substitution.

Now we want to show that infinite VN-reduction sequences for a expression
indicate that this expression can only be equal to Bot. For enable a proof, we
define a standard reduction that is usually applied to subexpressions of v.

Definition 6.4. A VN-standard-reduction of a perhaps open expression t is
defined as follows: Apply the VNS-label-shift in Figure 8 to t, starting with tVNS

and where no other subexpression is labelled VNS, and perform it exhaustively
and also in all non-deterministic executions. If at least one Bot-redex according
to Figure Fig. 5, 6 and 7 is labeled, then the corresponding leftmost-outermost
Bot-reduction is applied. If there is no such Bot-reduction, then the innermost-
leftmost VN-reduction according to Fig. 5, 6 and 7 is applied to a labelled redex.
The reduction is denoted as VNsr−−−→.
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Note that there may be multiple redexes with VNS -labels, but due to the above
priority rules, the VN-standard-reduction is uniquely defined.
In the following, if t is an expression, and σ is a value-substitution such that
σ(t) is closed, then valσ(t) denotes the value defined by σ(t)

sr,∗−−→ valσ(t). The
standard-reduction treats the seq-constant as the lambda-expressions λx, y.y.
For counting, we assume that this lambda-expression is labelled to distinguish
it from other abstractions. The seq-reduction (seq v s) → s, where v is a closed
value (which corresponds to 2 beta-reductions) is not counted in the length of
standard-reductions.

Lemma 6.5. Let t be an expression. If for some closing value-substitution σ

the reduction σ(t)
sr,n−−→ v holds for some value v, then t

VNsr,∗−−−−→ t′, where t′ is

VNsr-irreducible, and σ(t′)
≤n,sr−−−−→ v.

Proof. Note that if the VNsr-reduction sequence includes a Bot-reduction, then
the final result will be Bot, and hence not a value. Hence no Bot-reduction
could be used in the reduction sequence t

VNsr,∗−−−−→ t′. We show by induction first
on the number of (VNbeta), (VNcase)-VNsr-reductions and then on the total
number of VN-standard-reductions that t

VNsr−−−→ t′ and t
sr,n−−→ v implies that

t′
sr,≤n−−−−→ v if the VN-reduction is not a (VNcase) nor a (VNbeta)-reduction and

that t
VNsr,(beta)∨(case)−−−−−−−−−−−−→ t′ and t

sr,n−−→ v implies that t′
sr,≤n−1−−−−−→ v.

First we assume that t
VNsr−−−→ t′ for a VN-reduction not in

{Bot, (VNcase), (VNbeta)}. For the reductions (seqc), (seqlam), (seqx),
(seqapp), (seqseq) and (caseseq), it is easy to see that the sr-reduction sequence
(not counting the seq-reductions) is the same. The same holds for the (caseapp),
(casecase) and (seqcase)-reductions.
Now we look at the (VNbeta)-reduction. The sr-reduction of σ(R[((λx.s) r)]
compared with σ(R[seq r s[r/x]]) first sr-reduces σ(r) to a value, and then
makes a (beta)-reduction and proceeds with σ(s[r/x]). On the right hand side,
this is the same reduction sequence, if the seq-reduction is not counted. Thus
the number of reductions of t′ to a value is the same as for t, with one (beta)-
reduction less.
The same reasoning holds also for the (VNcase)-reduction.

Lemma 6.2 shows that there are no infinite VNsr−−−→-reductions without (VNcase),
(VNbeta)-reductions. Hence the ordering on VNsr-reductions is well-founded,
which consisting of the lexicographically ordered pairs (l1, l2) where l1 is the
number of standard-(VNcase), (VNbeta)-reductions, and l2 is the number of
other non-Bot-VNsr-reduction.
The base case is that there are no sr-reductions necessary, i.e. σ(t) is a value.
Then t is either an abstraction, and there are no VNsr-reductions, or it is a
variable, or of the form (c t1 . . . tn), where ti is constructed from constructors,
variables and abstractions. In this case also no VNsr-reduction is possible.
Finally, we conclude that the claim of the lemma holds.
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Corollary 6.6. If t has an infinite VNsr-reduction, then for every closing value-
substitution σ: σ(t)⇑, i.e. t is an Ω-expression.

Proof. Assume that for some σ: σ(t) ↓. Then Lemma 6.5 shows that t has a
finite VNsr-reduction, which contradicts the assumption.

Now we can justify the following mathematical (non-effective) construction
ValueConstrn of a P-value for a P ′-value v of P-type, given a depth n:

– ValueConstrn(t): Apply the VN-standard-reduction to t: if it does not ter-
minate, then the result is Bot. Otherwise, let t′ be the irreducible result of
the VN-standard-reduction sequence starting from t.

– Apply the same construction to the immediate subexpressions of t′ and re-
place these subexpressions with the results.

– If the abstraction-depth of the subexpression exceeds n+1, then replace the
subexpression by Bot.

– Apply the same construction to the bodies of the maximal abstractions of t′

using parameter n− 1 and replace these subterms with the results.
– If the abstraction-depth of the subexpression exceeds n+1, then replace the

subexpression by Bot not changing its type.

Lemma 6.7. Let P ′ be an extension of the program P. Given a P ′-value v of
P-type, the construction ValueConstrn(v) results in a P-value v′ with v′ ≤T v.

Proof. The (mathematical) construction terminates and results in a value. The
reason is that after one step Lemma 6.1 shows that the result is a P-value.

Lemma 6.8. Let t be an expression. If for some closing value-substitution σ the
reduction σ(t)

sr,n−−→ v holds for some value v, and t′ is constructed from t using

ValueConstr for binder-depth n + 1, then σ(t′)
≤n,sr−−−−→ v.

Proof. This follows from Lemma 6.5, and since the Bot-insertions are below
binder-depth n, and since Ω-expressions are smaller than other expressions w.r.t.
≤T .

Lemma 6.9. Let s, t be expressions, such that for all closing P-value substi-
tution and for all closed P-reduction contexts R the implication R[σ(s)] ↓ =⇒
R[σ(t)] ↓ holds. Then for all closing P ′-value substitution σ′ and all closed P ′-
reduction contexts R′, also the implication R′[σ′(s)] ↓ =⇒ R′[σ′(t)] ↓ holds.

Proof. Let σ′ be a P ′-closing value substitution and R′ be a closed P ′-reduction
context, such that R′[σ′(s)] ↓ holds. If the type of R′ is a P ′-type, then we use
R′′ = seq R′ True, where we w.l.o.g. assume that the type Bool with construc-
tors True, False is a P-type. Let n be the length of the reduction of R′′[σ′(s)],
let σ′ = {x1 7→ v′1, . . . , xm 7→ v′m}, and let r′ := λx.R′′[x]. Then for every v′i
construct vi := ValueConstrn(v′i), i.e. for depth n, and also construct r from r′

for depth n. Then with R[·] := r [·], we have R[σ(s)] ↓, since every standard
reduction step reduces the lambda-depth of the approximating Bots at most by
one, and by Lemma 6.7. By the assumption, we also have R[σ(t)] ↓, and since
r ≤T r′ and σ(t) ≤T σ′(t), we also obtain R′′[σ′(t)] ↓.
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Theorem 6.10 (CIU-Theorem F-free and global). Let P ′ be an extension
of P. For s, t :: T ∈ L, where T is a P-type, the implication R[σ(s)] ↓ =⇒
R[σ(t)] ↓ holds for all F-free P-value substitutions σ and F-free P-reduction
contexts R, where R[σ(s)], R[σ(t)] are closed if, and only if s ≤P′,T t holds.

Proof. This follows from the F-free CIU-theorem 4.15 and from Lemma 6.9.

Corollary 6.11 (CIU-Theorem F-free and local). Let P be a program and
s, t :: T ∈ L be P-expressions.
Then s ≤P,T t iff s ≤P∀,T t.

Proof. This follows from the F-free CIU-theorem 6.10, since the condition holds
for all extensions P ′ of P.

6.2 Global Correctness of Several Reductions and Transformations

The VN-reductions in figures 5, 6 and 7 are not only interesting as normalization
rules for values. They are also globally correct reductions, as we will see. The
same holds for the call-by-value reduction rules.
6.10, the following is obtained:

Theorem 6.12. The transformations (beta), (delta), and (case), i.e. the call-
by-value reduction rules, are globally correct program transformations in L.

Proof. This follows from Proposition 4.11 and Corollary 6.11.

Theorem 6.13. The transformations in figures 5, 6 and 7, i.e. the Bot-
reductions, the adapted call-by-name reduction rules and the case-shifting trans-
formations, are globally correct program transformations in L.

Proof. Lemma 6.3 shows that the transformations in figures 5, 6 and 7 are
correct. if only P-reduction contexts and P-value-substitutions are used. Then
Corollary 6.11 shows that the transformations are also globally correct.

7 Bisimulation

We show that equality of expressions can be determined by bisimulation. For
simplicity, we only prove the properties of a simulation. We assume that a pro-
gram P is fixed. The proof method is basically from Howe [How89], but since it
is used here for a typed language, the adaptation of Gordon [Gor99] for PCF is
closer. A difference is that we have recursive polymorphic types and data con-
structors. The approach was also worked out for a call-by-need non-deterministic
calculi in a similar way in [Man05,MSS09].
A substitution σ that replaces variables by closed values (of equal type) and
that closes the argument expressions is called a closing value substitution. In
this section we assume that binary relations ν only relate expressions of equal
monomorphic type, i.e. s ν t only if s, t have the same monomorphic type. The
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restriction of the relation µ to the type T is usually indicated by an extra suffix
T : i.e. µT . Typing is usually omitted, if it is clear from the context. We mention
typing only if it is necessary. This is justified, since types appear as labels, and
thus we can argue as in a simply typed system. Substitutions are also typed and
can only replace variables by expression of the same type.
Let ν be a binary relation on closed expressions. Then s νo t for any expressions
s, t iff for all closing value substitutions σ: σ(s) ν σ(t). Conversely, for binary
relations µ on open expressions, µc is the restriction to closed expressions.

Lemma 7.1. For a relation ν on closed expressions, the equality ((ν)o)c = ν
holds. For a relation µ on open expressions: s µ t =⇒ σ(s) (µ)c σ(t) for all
closing value substitutions σ is equivalent to µ ⊆ ((µ)c)o.

For simplicity, we sometimes use as e.g. in [How89] the higher-order abstract syn-
tax and write τ(..) for an expression with top operator τ , which may be case,
application, a constructor or λ, and θ for an operator that may be the head of
a value i.e. a constructor or λ. Note that θ may represent also the binding λ
using θ(x.s) as representing λx.s. Abstract syntax expressions x.s only occur in
relational formulas, where we permit α-renaming and follow the convention that
x.s µ x.t means s µ t for open expressions s, t.
A relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies
τ(s1, . . . , sn) µ τ(t1, . . . , tn).

Definition 7.2. Let ≤b be the greatest fixpoint (on the set of binary relations
over closed expressions) of the following operator [·] on binary relations ν over
closed expressions: s [ν] t if s⇑ or s ↓ (c s1 . . . sn) and t ↓ (c t1 . . . tn) and si ν ti
for all i or s ↓ λx.s′ and t ↓ λx.t′ and s′ νo t′

The principle of co-induction for the greatest fixpoint of [·] shows that for every
relation ν on closed expressions with ν ⊆ [ν], we derive ν ⊆ ≤b. This obviously
also implies νo ⊆ ≤o

b .

Lemma 7.3. ≤P ⊆ ≤o
b

Proof. Since reduction is deterministic, we have (≤P)c ⊆ [(≤P)c] and hence
(≤P)c ⊆ ≤b. This implies ≤P ⊆ ≤o

b .

Lemma 7.4. For closed values (c s1 . . . sn), (c t1 . . . tn) of equal type, we have
(c s1 . . . sn) ≤b (c t1 . . . tn) iff si ≤b ti. For abstractions λx.s, λx.t of equal type,
we have λx.s ≤b λx.t iff s ≤o

b t.

Proof. These properties follow from the fixpoint property of ≤b.

Lemma 7.5. The relations ≤b and ≤o
b are reflexive and transitive

Proof. Transitivity follows by showing that ν := ≤b ∪ (≤b ◦ ≤b) satisfies
ν ⊆ [ν] and then using co-induction.

The goal in the following is to show that ≤b is a precongruence. We will show
that this implies that ≤o

b = ≤c.
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Definition 7.6. The congruence candidate ≤̂o
b is a binary relation on open

expressions (ala Howe) and is defined inductively on the structure of expressions:

1. x ≤̂o
b s if x ≤o

b s.
2. τ(s1, . . . , sn) ≤̂o

b s if there is some expression τ(s′1, . . . , s
′
n) ≤o

b s with
si ≤̂o

b s′i.

The following is easily proved by standard arguments (for Howe’s technique).

Lemma 7.7.

1. ≤̂o
b is reflexive

2. ≤̂o
b and (≤̂o

b)
c are operator-respecting

3. ≤o
b ⊆ ≤̂o

b .
4. ≤̂o

b ◦ ≤o
b ⊆ ≤̂o

b .
5. (s ≤̂o

b s′ ∧ t ≤̂o
b t′) =⇒ t[s/x] ≤̂o

b t′[s′/x]
if s, s′ are closed values, i.e. the substitutions [s/x], [s′/x] replace variables
by closed values.

6. ≤̂o
b ⊆ ((≤̂o

b)
c)o

Proof. The proofs of the first claims are by structural induction. The last claim
(6) follows from part (5) using Lemma 7.1.

Lemma 7.8. The middle expression in the definition of ≤̂o
b can be chosen as

closed, if s, t are closed: Let s = τ(s1, . . . , sar(τ)), such that s ≤̂o
b t holds. Then

there are operands s′i, such that τ(s′1, . . . , s
′
ar(τ)) is closed, ∀i : si ≤̂o

b s′i and
τ(s′1, . . . , s

′
ar(τ)) ≤

o
b s.

Proof. The definition of ≤̂o
b implies that there is a expression τ(s′′1 , . . . , s′′ar(τ))

such that si ≤̂o
b s′′i for all i and τ(s′′1 , . . . , s′′ar(τ)) ≤

o
b t. Let σ be the substitution

with σ(x) := vx for all x ∈ FV (τ(s′′1 , . . . , s′′ar(τ))), where vx is the closed value
for the type of x that exists by Assumption 3.4.
Lemma 7.7 now shows that si = σ(si) ≤̂o

b σ(s′′i ) holds for all i. The relation
σ(τ(a′′1 , . . . , a′′ar(τ))) ≤o

b t holds, since t is closed and due to the definition of an
open extension. The requested expression is τ(σ(a′′1), . . . , σ(a′′ar(τ))).

The proof of the following theorem is an adaptation of [How96, Theorem 3.1] to
closing value substitutions.

Theorem 7.9. The following claims are equivalent.

1. ≤o
b is a precongruence

2. ≤̂o
b ⊆ ≤o

b

3. (≤̂o
b)

c ⊆ ≤b

Proof. The claim is shown by a chain of implications.
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“1 =⇒ 2”: Let ≤o
b be a precongruence. Then we show that s ≤̂o

b t implies
s ≤o

b t by induction on the definition of ≤̂o
b .

– If s is a variable, then s ≤o
b t.

– Let s = τ(s1, . . . , sar(τ)). Then there is some τ(s′1, . . . , s
′
ar(τ)) ≤o

b t

with si ≤̂o
b s′i for every i. By induction on the expression struc-

ture: ∀i : si ≤o
b s′i. Since ≤o

b is a precongruence by assump-
tion, we derive τ(s1, . . . , sar(τ)) ≤o

b τ(s′1, . . . , s
′
ar(τ)) and furthermore

τ(s1, . . . , sar(τ)) ≤o
b s by transitivity of ≤o

b .
“2 =⇒ 3”: From ≤̂o

b ⊆ ≤o
b we have (≤̂o

b)
c ⊆ (≤o

b)
c = ≤b.

“3 =⇒ 2”: From (≤̂o
b)

c ⊆ ≤b we have ((≤̂o
b)

c)o ⊆ ≤o
b by monotonicity.

Lemma 7.7 (6) implies ≤̂o
b ⊆ ((≤̂o

b)
c)o ⊆ ≤o

b .
“2 =⇒ 1”: Lemma 7.7 and ≤̂o

b ⊆ ≤o
b together imply ≤̂o

b = ≤o
b , thus

≤o
b is operator-respecting by Lemma 7.7 and a precongruence. ut

7.1 Determining the Congruence Candidate

Lemma 7.10. If s → s′, then s ≤o
b s′

Proof. This holds, since standard reduction is deterministic and by the definition
of ≤o

b .

Lemma 7.11. If s ≤̂o
b t and t → t′, then s ≤̂o

b t′

Proof. Follows from Lemma 7.10.

Definition 7.12. We call ≤̂o
b stable, iff for all closed s, s′, t: s (≤̂o

b)
c t and

s → s′ implies s′ (≤̂o
b)

c t.

Proposition 7.13. If ≤b is a precongruence, then ≤b = ≤P .

Proof. Let s ≤o
b t. Then for all closing value substitutions σ: σ(s) ≤b σ(t)

by definition of open extensions. This implies that for all closed contexts C
and all closing value substitutions σ: ∀C : C[σ(s)] ≤b C[σ(t)], since ≤o

b is a
precongruence. Hence s ≤P t. The other direction follows from Lemma 7.3.

Lemma 7.14. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a
value and s ≤̂o

b t. Then there is some closed value t′ = θ(t1, . . . , tn) with t
∗−→ t′

and for all i : si ≤̂o
b ti.

Proof. The definition of ≤̂o
b implies that there is a closed expression

θ(t′1, . . . , t
′
n) with si ≤̂o

b t′i for all i and θ(t′1, . . . , t
′
n) ≤b t. We use induction on

the structure of s:
If s = λx.s′, then there is some closed λx.t′ ≤o

b t with s′ ≤̂o
b t′. The relation

λx.t′ ≤o
b t implies that t

∗−→ λx.t′′. Lemma 7.10 now implies λx.s′ ≤̂o
b λx.t′′.

Definition of ≤̂o
b now shows that there is some closed λx.t(3) with s′ ≤̂o

b t(3) and
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λx.t(3) ≤b λx.t′′. The latter relation implies t(3) ≤o
b t′′, which also shows s′ ≤̂o

b t′′.

If θ is a constructor, then there is a closed expression c(t′1, . . . , t
′
n) with si ≤̂o

b t′i
for all i and c(t′1, . . . , t

′
n) ≤b t. By applying the induction hypothesis to si ≤̂o

b t′i
we obtain that t′i

∗−→ t′′i , where t′′i are values, and hence c(t′′1 , . . . , t′′n) is a value.
It follows that si ≤̂o

b t′′i by Lemma 7.11 and c(t′′1 , . . . , t′′n) ≤b t, by arranging the
reduction c(t′1, . . . , t

′
n) ∗−→ c(t′′1 , . . . , t′′n) from left to right to obtain a standard

reduction. The definition of ≤b implies that t
∗−→ θ(t(3)1 , . . . , t

(3)
n ) with t′′i ≤b t

(3)
i

for all i. By definition of ≤̂o
b , we obtain si ≤̂o

b t
(3)
i for all i.

Proposition 7.15. If ≤̂o
b is stable, then (≤̂o

b)
c ⊆ [(≤̂o

b)
c]. Hence (≤̂o

b)
c ⊆ ≤b

and ≤o
b is a precongruence.

Proof. Let s, t be closed, such that s ≤̂o
b t. Let s ↓ θ(s1, . . . , sn). Then

θ(s1, . . . , sn) (≤̂o
b)

c t by stability. There is some θ(t1, . . . , tn), such that t ↓
θ(t1, . . . , tn) and ∀i : si ((≤̂o

b)
c)o ti. This means that (≤̂o

b)
c ⊆ [(≤̂o

b)
c].

By co-induction and Lemma 7.11, the relation (≤̂o
b)

c ⊆ ≤b, and hence also
≤̂o

b ⊆ ((≤̂o
b)

c)o ⊆ ≤o
b hold.

Theorem 7.16. If ≤̂o
b is stable, then ≤̂o

b = ≤o
b = ≤P .

Proof. Lemma 7.11, Propositions 7.15, 7.13 and Theorem 7.9 show the claim.

It remains to show stability:

Proposition 7.17. Let s, t be closed expressions, s ≤̂o
b t and s −→ s′ where s is

the redex. Then s′ ≤̂o
b t.

Proof. Let s, t be closed expressions, s ≤̂o
b t and s −→ s′ where s is the redex.

The relation s ≤̂o
b t implies that s = τ(s1, . . . , sn) and that there is some closed

t′ = τ(t′1, . . . , t
′
n) with si ≤̂o

b t′i for all i and t′ ≤o
b t.

– For the (beta)-reduction, s = s1 s2, where s1 = (λx.s′1), s2 is a closed value,
and t′ = t′1 t′2. Lemma 7.14 shows that t′1

∗−→ λx.t′′1 with λx.s′1 ≤̂o
b λx.t′′1 and

also s1 ≤̂o
b t′′1 . From s2 ≤̂o

b t′2 and since s2 is a value, we obtain the next
part of the standard reduction t′2

∗−→ t′′2 with s2 ≤̂o
b t′′2 . From t′

∗−→ t′′1 [t′′2/x]
we obtain t′′1 [t′′2/x] ≤b t. Lemma 7.7 now shows s′1[s2/x] ≤̂o

b t′′1 [t′′2/x]. Hence
s′1[s2/x] ≤̂o

b t, again using Lemma 7.7.
– Similar arguments apply to the case-reduction.
– Suppose, the reduction is a δ-reduction. Then s ≤̂o

b t and s is a function
name. By the definition of ≤̂o

b , this means s ≤o
b t. Since s → s′ means also

s′ ∼o
b s, we also have s′ ≤o

b t. By Lemma 7.7, this implies s′ ≤̂o
b t.

Proposition 7.18. Standard reduction is stable in surface contexts
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Proof. We use induction on the structure of contexts. The base case is proved
in Proposition 7.17. Let S[s], t be closed, S[s] ≤̂o

b t and S[s] −→ S[s′],
where we assume that the redex is not at the top level. The relation
S[s] ≤̂o

b t implies that S[s] = τ(s1, . . . , sn) and that there is some t′ =
τ(t′1, . . . , t

′
n) ≤o

b t with si ≤̂o
b t′i for all i. If sj −→ s′j , then by induction hy-

pothesis, s′j ≤̂o
b t′j . Since ≤̂o

b is operator-respecting, we obtain also S[s′] =
τ(s1, . . . , sj−1, s

′
j , sj+1, . . . , sn) ≤̂o

b τ(t′1, . . . , t
′
j−1, t

′
j , t

′
j+1, . . . , t

′
n).

Theorem 7.19. The following equalities hold: ≤̂o
b = ≤o

b = ≤P .

Proof. Follows from stability of ≤̂o
b using Propositions 7.17, 7.18 and from

Theorem 7.16.

8 Constructive Logic and Induction

We assume in this section that a program P, including the set of types, con-
structors, and function symbols is given and fixed. Of course we assume that all
the assumptions (i.e. Assumptions 2.4, 3.4, and 3.6) on P are satisfied.

8.1 The Syntax

The syntax of monomorphic formulas (w.r.t. a program P) is:

atoms : A ::= True | False | (s = t)
formulas : F ::= A | F ∨ F | F ∧ F | ¬F

| ∀x :: T.F | ∃x :: T.F
where T is a monomorphic P-type
and s, t are P-expressions

8.2 The Semantics

There are the usual logical values True, and False. An important reference set
for quantification is the set of closed values for a given type T of some program
P:

Definition 8.1. The set MP,T is defined to be the set of all closed P-values of
monomorphic type T .

Note that we have assumed that for every T , the set MP,T is not empty, and that
for every monomorphic type T , there is an undefined expression of this type.

Definition 8.2. Let P be a program. The semantics of closed monomorphic
formulas is as follows, where I is an interpretation.
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I(s = t) = True if s ∼P,τ t for expressions s, t :: τ
I(s = t) = False if s 6∼P,τ t for expressions s, t :: τ
I(A ∧B) = I(A) ∧ I(B)
I(A ∨B) = I(A) ∨ I(B)
I(¬(A) = ¬I(A)
I(∀x :: τ.F ) = True if for all a ∈ MP,τ : I(F [a/x]) = True
I(∃x :: τ.F ) = True if for some a ∈ MP,τ : I(F [a/x]) = True

A P-tautology (P-theorem, monomorphic P-theorem) is a closed monomorphic
P-formula F , such that I(F ) = True. F is called a global P-tautology, iff it
holds for all extensions P ′ of P.

Example 8.3. Given appropriate definitions of the data type nat with two con-
structors 0, succ, where pred, defined as λx.casenat x (0 → ⊥) (succ y → y),
is a function that acts like a selector for succ, and where also addition + is
inductively defined, the following formula is a tautology:

∀x :: nat.∃y : nat.x + succ(0) = y

The closed formula ∃x :: nat.pred(0) = x is not a tautology, since only nat-
values for x are permitted, and since ⊥ 6∼ n for every nat-value n.
The formula ¬(∃x :: nat.pred(0) = x) is a tautology.

8.3 Universally Quantified Formulas: Conservativity

Theorem 8.4. Let P be a program and F := ∀x1 :: T1, . . . , xn :: Tn . s = t be
a closed monomorphic P-theorem. Then for all extensions P ′ of P, the formula
F is also a theorem, i.e., the formula is a global P-theorem.

Proof. The claim is equivalent to λx1, . . . , xn.s ∼P,T λx1, . . . , xn.t ⇐⇒
λx1, . . . , xn.s ∼P′,T λx1, . . . , xn.t, which holds by Theorem 6.10 for any ex-
tension P ′ of P.

Thus we can say that universally quantified equations between (monomorphically
typed) expressions that hold for a program P are global (for P). This also holds
for the correct program transformations (seen as equations) that we already
exhibited in Proposition 4.11 and 5.5.
In the following we extend Theorem 8.4 to formulas, where s = t is replaced by
a quantifier-free formula F , provided the type T is restricted.

Definition 8.5. A type T is a DT-type, if every closed value of type T is only
built from data constructors.

Examples for DT-types are Peano-integers, Boolean values and lists of Peano-
numbers.

Lemma 8.6. Let P ′ be an extension of P. If v :: T is a P ′-value, where T is a
DT-type and a P-type. Then v is a P-expression.
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Proof. This follows from the type restriction of data constructors.

Theorem 8.7. Let P be a program and F be a closed monomorphic formula,
such that all quantified variables have a DT-type. Then F is a P-tautology iff it
is a global P-tautology.

Proof. This follows from the definition of DT-type: the sets MP,T do not change
when the program is extended, from Lemma 8.6, and from Theorem 6.10, which
among others shows that all closed ∼-equalities are global.

We show a stronger claim on the existence of values than the approximation
techniques used by the proof techniques for the CIU-theorem-

Proposition 8.8. Let P be a program that is sufficiently expressive, such that in
particular every computable function on DT-types can be programmed in P. Let
P ′ be an extension of P. Then for every P ′-value v of P-type τ = τ1 → . . . → τn

where all τi are DT-types, there exists a “local” P-value w with v ∼P∀,τ w.

Proof. A P ′-value v of P-type τ1 → . . . → τn where all τi are DT-types defines a
computable function on DT-types, hence by assumption this can be programmed
in P, and the corresponding expression is such a P-value w.

Corollary 8.9. If there is a polymorphic fixpoint function fix : (α → α) → (α →
α) with fix = λf.λx.(f (λx.fix f x) x) in P then the expressivity-assumption in
Proposition 8.8 is satisfied and thus the claim of Proposition 8.8 holds.

Theorem 8.10. Let P be a program such that there is a fixpoint function as in
Corollary 8.9 and let F be a closed monomorphic formula, such that all quantified
variables have a DT-type or a type τ1 → . . . → τn, where all τi are DT-types.
Then F is a P-tautology iff it is a global P-tautology.

Proof. This follows from the definition of DT-types: the setsMP,T do not change
when the program is extended, and from Corollary 8.9.

We have to leave open the question whether every monomorphic tautology is
also a global P-tautology. The obstacle is that we could not prove that for any
closed P ′-value of P-type there is an equivalent P-value.

8.4 Conservativity by Adding Definedness

In this section we consider formulas which ensure that all expressions in equa-
tions are defined. Apart from partial functions, these are the monomorphic for-
mulas which are in scope of the VeriFun-system (where termination is an apriori
requirement).

Lemma 8.11. For every DT-type T , we can add a binary function eqT :: T →
T → Bool to P such that for all closed values v, w :: T : v ∼ w =⇒ eqT v w

∗−→
True and v 6∼ w =⇒ eqT v w

∗−→ False.
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Proof. Corollary 5.8 shows that the contextual equality does not change when F
is extended, in particular an equality-test function can be added. It is sufficient
to use case-expressions and recursion to define the equality function on DT-
types with an obvious programming. Since values of type T only consist of data
constructors, the comparison will terminate for values.

A quantifier-free formula F that is built from ∧,∨,¬ and equations over DT-
types can be internalized (i.e. represented by functions) using the Boolean data
type and a translation B as follows, where and , or ,not are functions on the
Boolean values True, False, programmed using case, and which are strict. The
behavior, using the Boolean values T, F and Bot for non-termination (or unde-
fined values), is as follows:

not T F Bot
F T Bot

or T F Bot
T T T Bot
F T F Bot
Bot Bot Bot Bot

and T F Bot
T T F Bot
F F F Bot
Bot Bot Bot Bot

Definition 8.12. The translation B is defined as:

B(∧) ≡ λx, y.and x y
B(∨) ≡ λx, y.or x y
B(¬) ≡ λx.not x
B(s =T t) ≡ eqT s t

A quantifier-free formula F is translated into the equation (eqT B(F ) True).

Note that the Boolean functions are defined to be symmetric in order to reflect
the properties of the logical connectives ∨,∧ like correctness of double negation
elimination and the law of deMorgan. However, if an expression is undefined,
then the B-translation of a formula also evaluates to undefined, whereas the
formula Bot = Bot is interpreted as True. Thus, quantifier-free formulas can
only be correctly translated, if every expressions s, t in every equation s = t in
the formula evaluates to a value, since otherwise, the expression (eqT s t) does
not terminate and is equivalent to Bot. Special kinds of formulas that take care
of definedness can be translated correctly:
Let definedT be the function λxT .True having the following property:
definedT (s) ∗−→ True for every converging expression of DT-type T . The function
never produces False, but does not terminate if the argument is not terminating.
Given a program P that includes the Boolean data type, the extension PD is
constructed by adding the Boolean functions and , or , and not and for a given
finite set of types the functions eqT , the functions definedT .
For a formula ∀x1, . . . , xn.F , where F is quantifier-free and every equation is of
a DT-type, let the definedness-formula be ∀x1, . . . , xn.(Def (F ) =⇒ F ), where
Def (F ) is the formula defined(s1) = True ∧ . . . ∧ defined(sn) = True, where
si, i = 1, . . . , n are all the expressions that occur as top-expressions in equations
of F .
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The following theorem shows that the theorems in the scope of VeriFun are
global:

Theorem 8.13. Let P be a program and F be a quantifier-free formula, where
every equation in F is of a DT-type, and let ∀x1 :: T1, . . . , xn :: Tn .(Def (F ) =⇒
F ) be a closed monomorphic theorem. Then for all extensions P ′ of P, the
formula ∀x1 :: T1, . . . , xn :: Tn.Def (F ) =⇒ F is also a theorem; i.e. it is
global P-tautology.

Proof. The formula ∀x1 :: T1, . . . , xn :: Tn .Def (F ) =⇒ F is a closed
monomorphic theorem w.r.t. PD if and only if λx1, . . . , xn.B(Def (F ) =⇒
F ) ∼PD,T λx1, . . . , xn.B(Def (F )), which can be seen as follows: If some
σ(si) is undefined, then the equation defined(s1) = True is false under the
interpretation, hence the whole formula is true. For the corresponding sub-
stitution, both functions are equivalent to Bot. The claim is equivalent to
λx1, . . . , xn.B(Def (F ) =⇒ F ) ∼P′

D,T λx1, . . . , xn.B(Def (F )), which holds
by Theorem 6.10 for any extension P ′ and by Lemma 8.11. Constructing the
extensions is no problem by keeping names different if necessary). The latter
again implies that ∀x1 :: T1, . . . , xn :: Tn .Def (F ) =⇒ F is a closed monomor-
phic P ′-theorem. Now the CIU-theorem implies that the formula is a global
P-tautology.

It is not clear how to extend Theorem 8.4 and Theorem 8.13 to formulas with
arbitrary quantifiers and formulas for any extension P ′: The semantics changes,
since there are more P ′-values of type T than P-values of type T , and since
existential quantifiers and quantifier-nesting cannot be translated into a pro-
grammable function like eqT .

8.5 Polymorphic Formulas

Polymorphic formulas are like monomorphic formulas, where type variables are
permitted in the type of the quantified variables, and in expressions in formulas.
The semantics has to be extended as follows:

Definition 8.14. Given a program P, a polymorphic P-formula F is a P-
tautology (a polymorphic P-theorem), if for every P-type substitution ρ that
instantiates every type variable in F with a monomorphic P-type, the formula
ρ(F ) is a monomorphic P-theorem.
F is a global P-theorem, iff it holds also for all extensions P ′ of P.

Example 8.15. In general it is not the case that every polymorphic theorem is
also global. E.g. let P be a program where the data type Bool, Peano-numbers
and lists are defined as data structures, but no other data types. Then the
following polymorphic theorem holds:

∀x1 :: a, x2 :: a, x3 :: a.((x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)
=⇒ ∃x :: a.x 6= x1 ∧ x 6= x2 ∧ x 6= x3),
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which expresses that if there are three different values of a certain type, then
there is another value of this type. This is true in P. However, it is easy to extend
P to P ′ by adding a type T3 having exactly the set {red, blue, green} as data
constructors. Then the formula is false for this type T3 in P ′.

A similar example can be constructed if F is an inequation:

Example 8.16. Let P be the program containing Boolean, Peano-numbers and
lists. Let the formula be: ∀x :: a.∃y :: a.x 6= y. This formula is a P-tautology.
However, after adding a unit-type with exactly one value giving the program P ′,
this will no longer hold.

Nevertheless, we believe that there are classes of polymorphic formulas, where
being a P-tautology is equivalent to being a global P-tautology: e.g. universally
quantified equations; and as a generalization, perhaps also universally quantified
formulas.

8.6 Inductively Proved Polymorphic Theorems

An example for a global polymorphic theorem is associativity of the append-
function on lists of any type: ∀xs :: List (a), ys :: List (a), zs ::
List (a).append(xs, (append(ys, zs))) = append(append(xs, ys), zs). This, for
example, also holds for list-elements of function type or if the elements are from
an extension of P.

Lemma 8.17. Let P be a program and P ′ be an extension of P. Every P ′-value
v of a (non-quantified) polymorphic P-type τ where all occurring type variables
are in {α1, . . . , αn} is built using the following grammar:
W ::= λx.E | cP W1 . . . Wn | E :: αi where cP is a P-constructor.

Proof. By induction on the size. The base case is included in the following case
analysis:

– If v is an abstraction, then the claim holds.
– If v = c v1 . . . vn, and c is a constructor from P, then the claim also holds

by induction hypothesis.
– If v = c v1 . . . vn, and c is a constructor from P ′, but not a P-constructor,

then the type of v cannot contain a P ′-type constructor, due to the variable
condition of the type of type-constructors. Hence the only possibility is that
v has type αi.

If an induction scheme for the proof of a universally quantified polymorphic
equation is used, where the induction measure is “independent” of the type
variables and only global theorems and globally correct transformations are
used to prove the induction base and hypothesis, then also the universally
quantified equation will be a global P-theorem. For example, associativity of
append is thus provable to be a global theorem (see [Ver]).
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We have to permit polymorphically typed expressions, i.e. where the type
may contain type variables. Then the equality is defined as equality under all
monomorphic type-substitutions and value-substitutions. The correctness of
call-by-value δ, (beta) and case-reductions holds for this equality.

A simple induction scheme for global theorems is as follows, where we allow
polymorphic types for the subexpressions.

– Assume a fixed P.
– Assume there is a measure µ on values giving natural numbers, such that

the subexpressions whose type is a type variable, do not contribute to the
measure. This may be e.g. a weighted sum of the symbols not counting the
values whose type is a type variable.

– Given a formula ∀x1, . . . , xn.F , perform the following two proof steps:
• (base case) Prove F [v1, . . . , vn] for all values vi with µ(vi) = 0.
• (induction step) For all n > 0 prove the following implication: If

F [v1, . . . , vn] holds for all vi with µ(vi) < n, then F [v1, . . . , vn] also
holds for all vi with µ(vi) = n, where only globally correct proof steps
are permitted.

Then the formula holds and is global for P.

It is open whether the following holds:

Let P be a program and F be a polymorphic theorem of the form
∀x1, . . . , xn.s = t. Then for all extensions P ′ of P, the formula F is
also a P ′-theorem.
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A Type Derivation System

The type of unlabeled expressions is defined by using the inference system shown
in figure 9. The explicit typing of variables is placed into a type environment, i.e.
variables have no built-in type for this derivation system. An environment Γ is
a (partial) mapping from variables and function symbols f ∈ F to types, where
we assume that every function f is mapped to a type. The notation Dom(Γ ) is
the set of variables (and function names) that are mapped by Γ . The notation
Γ, x :: τ means a new environment where x 6∈ Dom(Γ ). The types of function
symbols in F may also have a quantifier-prefix.

(Var) Γ, x :: S ` x :: S

(Fn) Γ, f :: S ` f :: S for f ∈ F

(App)
Γ ` s :: S1 → S2 Γ ` t :: S1

Γ ` (s t) :: S2

(Abs)
Γ, x :: S1 ` s :: S2

Γ ` (λx.s) :: S1 → S2

(Cons)

Γ ` s1 :: S1 ; . . . ; Γ ` sn :: Sn

Γ, y :: typeOf (c) ` (y s1 . . . sn) :: T

Γ ` (c s1 . . . sn) :: T
if ar(c) = n

(Case)

Γ ` s :: K S1 . . . Sm

Γ, x1,1 :: T1,1, . . . x1,n1 :: T1,n1 ` t1 :: T
Γ, x1,1 :: T1,1, . . . x1,n1 :: T1,n1 ` (c1 x1,1 . . . x1,n1) :: K S1 . . . Sm

. . . . . .
Γ, xk,1 :: Tk,1, . . . xk,nk :: Tk,nk ` tk :: T
Γ, xk,1 :: Tk,1, . . . xk,nk :: Tk,nk ` (ck xk,1 . . . xk,n1) :: K S1 . . . Sm

Γ ` (caseK s ((c1 x1,1 . . . x1,n1) -> t1) . . .) :: T

(Generalize)
Γ ` t :: T

Γ ` t :: ∀X .T

if X = FTV (T ) \ Y
where Y =

S
x∈FV (t)

{FTV (S) | (x :: S) ∈ Γ}

(Instance)
Γ ` t :: ∀X .S1

Γ ` t :: S2
if ρ(S1) = S2 with Dom(ρ) ⊆ X

Fig. 9. The type-derivation rules

Definition A.1. Given a program, the types Γ of the functions in f are called
admissible, and all the functions are called derivationally well-typed, iff for every
f ∈ F and the type f :: T ∈ Γ , we have Γ ` df :: T .
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Using the rules of the derivation system, a standard polymorphic type system
can be implemented that computes types as greatest fixpoints using iterative
processing. By standard reasoning, there is a most general type of every expres-
sion, From a typing point of view, the derivation system and the type-labeling
are equivalent mechanisms.
Not that typability using the iterative procedure is undecidable, since the semi-
unification problem [KTU93] can be encoded. Stopping the iteration, like in
Milner’s type system, leads to a decidable, but incomplete type system.


