On Conservativity of Concurrent Haskell

David Sabel and Manfred Schmidt-Schauss
Goethe-University Frankfurt am Main, Germany

Technical Report Frank-47
Research group for Artificial Intelligence and Software Technology
Institut für Informatik,
Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,
Postfach 11 19 32, D-60054 Frankfurt, Germany

April 18, 2012

Abstract. The calculus CHF models Concurrent Haskell extended by concurrent, implicit futures. It is a lambda and process calculus with concurrent threads, monadic concurrent evaluation, and includes a pure functional lambda-calculus PF which comprises data constructors, case-expressions, letrec-expressions, and Haskell’s seq. Our main result is conservativity of CHF as extension of PF. This allows us to argue that compiler optimizations and transformations from pure Haskell remain valid in Concurrent Haskell even if it is extended by futures. We also show that conservativity does no longer hold if the extension includes Concurrent Haskell and unsafeInterleaveIO.

1 Introduction

Pure non-strict functional programming is semantically well understood, permits mathematical reasoning and is referentially transparent [SS89]. A witness is the core language of the functional part of Haskell [Pey03] consisting only of supercombinator definitions, abstractions, applications, data constructors and case-expressions. However, useful programming languages require much more expressive power for programming and controlling IO-interactions. Haskell employs monadic programming [Wad95] as an interface between imperative and non-strict pure functional programming. However, the sequentialization of IO-operations enforced by Haskell’s IO-monad sometimes precludes declarative programming. Thus Haskell implementations provide the primitives unsafePerformIO :: IO a → a which switches off any restrictions enforced by the IO-monad and unsafeInterleaveIO :: IO a → IO a which delays a monadic action inside Haskell’s IO-monad. Strict sequentialization is also lost in Concurrent Haskell [Pey01] which adds concurrent threads and synchronizing variables (so-called MVars) to Haskell.
All these extensions to the pure part of Haskell give rise to the question whether the extended language has still the nice reasoning properties of the pure functional core language, or put differently: whether the extensions are safe. The motivations behind this are manifold: We want to know whether the formal reasoning on purely functional programs we teach in our graduate courses is also sound for real world implementations of Haskell, and whether all the beautiful equations and correctness laws we prove for our tiny and innocent looking functions break in real Haskell as extension of pure core Haskell. Another motivation is to support implementors of Haskell-compilers, aiming at correctness. The issue is whether all the program transformations and optimizations implemented for the core part can still be performed for extensions without destroying the semantics of the program.

For the above mentioned extensions of Haskell it is either obvious that they are unsafe (e.g. \texttt{unsafePerformIO}) or the situation is not well understood. Moreover, it is also unclear what “safety” of an extension means. For instance, Kiselyov \cite{Kiselyov09} provides an example showing that the extension of pure Haskell by \texttt{unsafeInterleaveIO} is not “safe” due to side effects. He exhibits two pure functions \(f, g\) that are semantically equal under pure functional semantics, but can be distinguished if they get their input through lazy file reading. However, there appears to be no consensus on the mailing list over the question whether the example shows “unsafeness”.

A possible approach is to use a precise semantics that models nondeterminism, sharing and laziness (see e.g. \cite{SSS08}) which could be extended to model impure and non-deterministic computations correctly, and then to adapt the compiler accordingly. While this approach is theoretically challenging and interesting in itself, it appears to be problematic from the implementor’s point of view, since it enforces special care in programming optimizations in the compiler. Thus we follow a different approach for laying the foundation of correct reasoning that exploits the separation between pure functional and impure computations by monadic programming. As the notion of “safety” of an extension we propose conservativity, i.e. all the equations that hold in the purely functional core language must also hold after extending the language.

As model of Concurrent Haskell we use the (monomorphically) typed calculus \(\text{CHF}\) which we introduced in \cite{SSS11}. \(\text{CHF}\) can be seen as a core language of Concurrent Haskell extended by implicit concurrent futures: Futures are variables whose value is initially not known, but becomes available in the future when the corresponding (concurrent) computation is finished (see e.g. \cite{BH77,Hal85}). Implicit futures do not require explicit forces when their value is demanded, and thus they permit a declarative programming style using implicit synchronization by data dependency. Implicit futures can be implemented in Concurrent Haskell using the extension by the \texttt{unsafeInterleaveIO}-primitive:

\begin{verbatim}
future :: IO a → IO a
future act = do ack ← newEmptyMVar
 forkIO (act >>= putMVar ack)
 unsafeInterleaveIO (takeMVar ack)
\end{verbatim}
First an empty \texttt{MVar} is created, which is used to store the result of the concurrent computation, which is performed in a new concurrent thread spawned by using \texttt{forkIO}. The last part consists of taking the result of the \texttt{MVar} using \texttt{takeMVar}, which is blocked until the \texttt{MVar} is nonempty. Moreover, it is delayed using \texttt{unsafeInterleaveIO}. In general, wrapping \texttt{unsafeInterleaveIO} around action \texttt{act} \texttt{i} in \texttt{do} \{\texttt{x} \leftarrow \texttt{act} \texttt{i};\texttt{y} \leftarrow \texttt{act} \texttt{i+1};\ldots\}, breaks the strict sequencing, i.e. action \texttt{act} \texttt{i} is performed at the time the value of \texttt{x} \texttt{i} is \textit{needed} and thus not necessarily before \texttt{act} \texttt{i+1}.

In \textit{CHF} the above \textit{future}-operation is a built-in primitive. Unlike the π-calculus [Mil99,SW01] (which is a message passing model), the calculus \textit{CHF} comprises shared memory modelled by \texttt{MVars}, threads (i.e. futures) and heap bindings. On the expression level \textit{CHF} provides an extended lambda-calculus closely related to Haskell’s core language: Expressions comprise data constructors, case-expressions, \texttt{letrec} to express recursive bindings, Haskell’s \texttt{seq} operator for sequential evaluation, and monadic operators for accessing \texttt{MVars}, creating futures, and the bind-operator $\gg=$ for monadic sequencing. \textit{CHF} is equipped with a monomorphic type system allowing recursive types. In [SSS11] two (semantically equivalent) small-step reduction strategies are introduced for \textit{CHF}: A call-by-need strategy which avoids duplication by sharing and a call-by-name strategy which copies arbitrary subexpressions. The operational semantics of \textit{CHF} is related to the one for Concurrent Haskell introduced in [MJMR01,Pey01] where also exceptions are considered. \textit{CHF} also borrows some ideas from the call-by-value lambda calculus with futures [NSS06,NSSSS07].

In [SSS11] we showed correctness of several program transformations and that the monad laws hold in \textit{CHF}, under the prerequisite that \texttt{seq}'s first argument was restricted to functional types, however, we had to leave open the important question whether the extension of Haskell by concurrency and futures is conservative.

\textbf{Results.} In this paper we address this question and obtain a positive result: \textit{CHF} is a \textit{conservative extension} of its pure sublanguage (Main Theorem \ref{thm:conservativity}), i.e. the equality of pure functional expressions transfers into the full calculus, where the semantics is defined as a contextual equality for a conjunction of may- and should-convergence. This result enables equational reasoning, pure functional transformations and optimizations also in the full concurrent calculus, \textit{CHF}. This property is sometimes called \textit{referential transparency}. Haskell’s type system is polymorphic with type classes whereas \textit{CHF} has a monomorphic type system. Nevertheless we are convinced that our main result can be transferred to the polymorphic case following our proof scheme, but it would require more (syntactical) effort. Our results also imply that counterexamples like [Kis09] are impossible for \textit{CHF}. We also analyze the boundaries of our conservativity result and show in Section \ref{sec:lazy} that if so-called \textit{lazy futures} [NSS06] are added to \textit{CHF} then conservativity breaks. Intuitively, the reason is that lazy futures may remove some nondeterminism compared to usual futures: While usual futures allow any interleaving of the concurrent evaluation, lazy futures forbid some of them, since their computation cannot start before their value is demanded by some other
thread. Since lazy futures can also be implemented in the `unsafeInterleaveIO` extension of Concurrent Haskell our counterexample implies that Concurrent Haskell with an unrestricted use of `unsafeInterleaveIO` is not safe.

Semantics. As program equivalence for CHF we use contextual equivalence (following Abramsky [Abr90]): two programs are equal iff their observable behavior is indistinguishable even if the programs are plugged as a subprogram into any arbitrary context. Besides observing whether a program can terminate (called *may-convergence*) our notion of contextual equivalence also observes whether a program never looses the ability to terminate after some reductions (called *should-convergence* or sometimes must-convergence, see e.g. [CHS05, NSSSS07, RV07, SSSS08]). The latter notion slightly differs from the classic notion of must-convergence (e.g. [DH84]), which additionally requires that all possible computation paths are finite. Some advantages of should-convergence (compared to classical must-convergence) are that restricting the evaluator to *fair scheduling* does not modify the convergence predicates nor contextual equivalence; that equivalence based on may- and should-convergence is invariant under a whole class of test-predicates (see [SSS10]), and inductive reasoning is available as a tool to prove should-convergence. Moreover, contextual equivalence has the following invariances: If \(e \sim e' \), then \(e \) may-converges iff \(e' \) may-converges; and \(e \) may reach an error iff \(e' \) may reach an error, where an error is defined as a program that does not may-converge. Since deadlocks are seen as errors, correct transformations do not introduce errors nor deadlocks in error- and deadlock-free programs.

Consequences. The lessons learned are that there are declarative and also very expressive pure non-strict functional languages with a safe extension by concurrency.

Since CHF also includes the core parts of Concurrent Haskell our results also imply that Concurrent Haskell conservatively embeds pure Haskell. This also justifies to use well-understood (also denotational) semantics for the pure subcalculus, for example the free theorems in the presence of `seq` [JV06], or results from call-by-need lambda calculi (e.g. [NH09, SSSS08]) for reasoning about pure expressions inside Concurrent Haskell.

Proof Technique. Our goal is to show for the pure (deterministic) sub-language `PF` of CHF: two contextually equivalent `PF`-expressions \(e_1, e_2 \) (i.e. \(e_1 \sim_{c,PF} e_2 \)) remain contextually equivalent in CHF (i.e. \(e_1 \sim_{c,CHF} e_2 \)). The proof of the main result appears to be impossible by a direct attack. So our proof is indirect and uses the correspondence (see [SSST1]) of the calculus CHF with a calculus CHFI that unravels recursive bindings into infinite trees and uses call-by-name reduction. The proof structure is illustrated in Fig. 1. Besides CHFI there are also sublanguages `PFI` and `PFMI` of CHFI which are deterministic and have only expressions, but no processes and `MVar`s. While `PFMI` has monadic operators, in `PFI` (like in `PF`) only pure expressions and types are available. For \(e_1 \sim_{c,CHF} e_2 \) the corresponding infinite expressions \(\IT(e_1), \IT(e_2) \) (in the calculus `PFI`) are considered in step (1). Using the results of [SSST1] we are able to show that \(\IT(e_1) \) and \(\IT(e_2) \) are contextually equivalent in `PFI`.
In the pure (deterministic) sublanguage PFI of $CHFI$, an applicative bisimulation $\sim_{b,PFI}$ can be shown to be a congruence, using the method of Howe [How89,How96,Pit11], however extended to infinite expressions. Thus as step (2) we have that $IT(e_1) \sim_{b,PFI} IT(e_2)$ holds. As we show, the bisimulation transfers also to the calculus $PFMI$ which has monadic operators, and hence we obtain $IT(e_1) \sim_{b,PFMI} IT(e_2)$ (step (3)). This fact then allows to show that both expressions remain contextually equivalent in the calculus $CHFI$ with infinite expressions (step (4)). Finally, in step (5) we transfer the equation $IT(e_1) \sim_{c,CHFI} IT(e_2)$ back to our calculus CHF with finite syntax, where we again use the results of [SSS11].

Outline. In Section 2 we recall the calculus CHF and introduce its pure fragment PF. In Section 3 we introduce the calculi $CHFI$, PFI, and $PFMI$ on infinite processes and expressions. We then define applicative bisimulation for PFI and $PFMI$ in Section 4 and show that bisimulation of PFI and $PFMI$ coincide and also that contextual equivalence is equivalent to bisimulation in PFI. In Section 5 we first show that $CHFI$ conservatively extends $PFMI$ and then we go back to the calculi CHF and PF and prove our Main Theorem 5.5 showing that CHF is a conservative extension of PF. In Section 6 we show that extending CHF by lazy futures breaks conservativity. Finally, we conclude in Section 7.

2 The CHF-Calculus and its Pure Fragment

We recall the calculus CHF modelling Concurrent Haskell with futures [SSS11]. The syntax of CHF consists of processes which have expressions as subterms. Let Var be a countably infinite set of variables. We denote variables with x,x_1,y,y_1. The syntax of processes $Proc_{CHF}$ and expressions Exp_{CHF} is shown in Fig. 2.

Parallel composition $P_1 | P_2$ constructs concurrently running threads (or other components), name restriction $\nu x.P$ restricts the scope of variable x to process P. A concurrent thread $x \leftarrow e$ evaluates the expression e and binds the result of the evaluation to the variable x. The variable x is called the future x. In a process there is usually one distinguished thread – the main thread – which is labeled with “main” (as notation we use $x \leftarrow e$). MVars behave like
one place buffers, i.e. if a thread wants to fill an already filled MVar \(x \) with content \(e \), the thread blocks, and a thread also blocks if it tries to take something from an empty MVar \(x \) \(= \) \(e \). In \(x \) \(= \) \(e \) or \(x \) \(= \) \(e \) we call \(x \) the name of the MVar. Bindings \(x = e \) model the global heap of shared expressions, where we say \(x \) is a binding variable. For a process \(P \) we say a variable \(x \) is an introduced variable if \(x \) is a future, a name of an MVar, or a binding variable. A process is well-formed if all introduced variables are pairwise distinct, and there exists at most one main thread \(x \) \(\leftarrow \) \(e \).

We assume a set of data constructors \(c \) which is partitioned into sets, such that each family represents a type \(T \). The constructors of a type \(T \) are ordered, i.e. we write \(c_{T,1}, \ldots, c_{T,[T]} \), where \([T]\) is the number of constructors belonging to type \(T \). We omit the index \(T,i \) in \(c_{T,i} \) if it is clear from the context. Each data constructor \(c_{T,i} \) has a fixed arity \(\text{ar}(c_{T,i}) \geq 0 \). For instance the type \(\text{Bool} \) has constructors \(\text{True} \) and \(\text{False} \) (both of arity 0) and the type \(\text{List} \) has constructors \(\text{Nil} \) (of arity 0) and \(\text{Cons} \) (of arity 2). We assume that there is a unit type () with a single constant () as constructor.

Expressions \(\text{Expr}_{CHF} \) have monadic expressions as a subset (see Fig. 2). Besides the usual constructs of the lambda calculus (variables, abstractions, applications) expressions comprise constructor applications \((c \ e_{1} \ldots e_{\text{ar}(c)}) \), case-expressions for deconstruction, seq-expressions for sequential evaluation, letrec-expressions to express recursive shared bindings and monadic expressions which allow to form monadic actions.

There is a \(\text{case}_{T} \)-construct for every type \(T \) and in \(\text{case} \)-expressions there is a \(\text{case} \)-alternative for every constructor of type \(T \). The variables in a \(\text{case} \)-pattern \((c \ x_{1} \ldots x_{\text{ar}(c)}) \) and also the bound variables in a letrec-expression must be pairwise distinct. We sometimes abbreviate the \(\text{case} \)-alternatives as \(\text{alts} \), i.e. we write \(\text{case}_{T} \ e \) of \(\text{alts} \). The expression \(\text{return} \ e \) is the monadic action which returns \(e \) as result, the operator \(>>= \) combines two monadic actions, the expression \(\text{future} \ e \) will create a concurrent thread evaluating the action \(e \), the operation \(\text{newMVar} \ e \) will create an MVar filled with expression \(e \), \(\text{takeMVar} \ x \) will return the content of MVar \(x \), and \(\text{putMVar} \ x \ e \) will fill MVar \(x \) with content \(e \).
\[
P_1 \parallel P_2 \equiv P_2 \parallel P_1
\]
\[
\nu x_1.\nu x_2.P \equiv \nu x_2.\nu x_1.P
\]
\[(P_1 \parallel P_2) \parallel P_3 \equiv P_1 \parallel (P_2 \parallel P_3)\]
\[P_1 \equiv P_2 \text{ if } P_1 =_{\alpha} P_2\]
\[(\nu x.P_1) \parallel P_2 \equiv \nu x.(P_1 \parallel P_2), \text{ if } x \notin FV(P_2)\]

\textbf{Fig. 4. CHF: Structural Congruence of Processes}

\[
D \in PCtxt ::= [] | D \parallel P | P \parallel D | \nu x.D
\]
\[
M \in MCtxt ::= [] | M >>\triangleright e
\]
\[
E \in ECtxt ::= [] | (E e) | \text{(case } E \text{ of alts)} | \text{(seq } E \text{ e)}
\]
\[
F \in FCtxt ::= E | \text{(takeMVar } E) | \text{(putMVar } E \text{ e)}
\]

\textbf{Fig. 5. CHF: Process-, Monadic-, Evaluation-, and Forcing-Contexts}

Variable binders are introduced by abstractions, \texttt{letrec}-expressions, \texttt{case}-alternatives, and for processes by the restriction \(\nu x.P\). For the induced notion of free and bound variables we use \(FV(P)\) (\(FV(e)\), resp.) to denote the free variables of process \(P\) (expression \(e\), resp.) and \(=_{\alpha}\) to denote \(\alpha\)-equivalence. We use the \textit{distinct variable convention}, i.e. all free variables are distinct from bound variables, all bound variables are pairwise distinct, and reductions implicitly perform \(\alpha\)-renaming to obey this convention. For processes \textit{structural congruence} \(\equiv\) is defined as the least congruence satisfying the equations shown in Fig. 4.

We use a monomorphic type system where data constructors and monadic operators are treated like “overloaded” polymorphic constants. The syntax of types \(\text{Typ}_{CHF}\) is shown in Fig. 3 where \(\text{IO } \tau\) means that an expression of type \(\tau\) is the result of a monadic action, \(\text{MVar } \tau\) is the type of an \(\text{MVar}\)-reference with content type \(\tau\), and \(\tau_1 \rightarrow \tau_2\) is a function type. With \text{types}(c) we denote the set of monomorphic types of constructor \(c\). To fix the types during reduction, we assume that every variable has a fixed (built-in) type: Let \(\Gamma\) be the global typing function for variables, i.e. \(\Gamma(x)\) is the type of variable \(x\). We use the notation \(\Gamma \vdash e :: \tau\) to express that \(\tau\) can be derived for expression \(e\) using the global typing function \(\Gamma\). For processes \(\Gamma \vdash P :: \text{wt}\) means that the process \(P\) can be well-typed using the global typing function \(\Gamma\). We omit the (standard) monomorphic typing rules. Special typing restrictions are: (i) \(x \ll e\) is well-typed, if \(\Gamma \vdash e :: \text{IO } \tau\), and \(\Gamma \vdash x :: \tau\), (ii) the first argument of \texttt{seq} must not be an \texttt{IO}- or \texttt{MVar}-type, since otherwise the monad laws would not hold in \(CHF\) (and even not in Haskell, see [SSS11]). A process \(P\) is \textit{well-typed} iff \(P\) is well-formed and \(\Gamma \vdash P :: \text{wt}\) holds. An expression \(e\) is \textit{well-typed} with type \(\tau\) (written as \(e :: \tau\)) iff \(\Gamma \vdash e :: \tau\) holds.

\subsection{Operational Semantics and Program Equivalence}

In [SSS11] a call-by-need as well as a call-by-name small step reduction for \(CHF\) were introduced and it has been proved that both reduction strategies induce the same notion of program equivalence. Here we will only recall the call-by-name
Monadic Computations

(lunit) \(y \leftarrow M[\text{return } e_1] \Rightarrow e_2 \quad \text{CHF} \quad y \leftarrow M[e_2] \)

(tmvar) \(y \leftarrow M[\text{takeMVar } x] | x m e \quad \text{CHF} \quad y \leftarrow M[\text{return } e] | x m \)

(pmvar) \(y \leftarrow M[\text{putMVar } e x] | x m e \quad \text{CHF} \quad y \leftarrow M[\text{return } ()] | x m e \)

(nmvar) \(y \leftarrow M[\text{newMVar } e] \quad \text{CHF} \quad \nu x. (y \leftarrow M[\text{return } x] | x m e) \)

(fork) \(y \leftarrow M[\text{future } e] \quad \text{CHF} \quad \nu z. (y \leftarrow M[\text{return } z] | z \leftarrow e) \)

where \(z \) is fresh and the new thread is not main

(unIO) \(y \leftarrow \text{return } e \quad \text{CHF} \quad y = e \)

if the thread is not the main-thread

Functional Evaluation

(cpe) \(y \leftarrow M[F[x]] | x = e \quad \text{CHF} \quad y \leftarrow M[F[e]] | x = e \)

(mkbinds) \(y \leftarrow M[F[\text{letrec } x_1 = e_1, \ldots, x_n = e_n \text{ in } e]] \quad \text{CHF} \quad \nu x_1 \ldots x_n. (y \leftarrow M[F[e]] | x_1 = e_1 \ldots | x_n = e_n) \)

(beta) \(y \leftarrow M[F[(\lambda x. e_1) e_2]] \quad \text{CHF} \quad y \leftarrow M[F[e_1[e_2/x]]] \)

(case) \(y \leftarrow M[F[\text{case } e (e_1 \ldots e_n) \text{ of } \ldots (e y_1 \ldots y_n \to e)] \quad \text{CHF} \quad y \leftarrow M[F[e_1/y_1, \ldots, e_n/y_n]] \]

(seq) \(y \leftarrow M[F[\text{seq } v e]] \quad \text{CHF} \quad y \leftarrow M[F[e]] v \) a funct. value

Closure w.r.t. \(\equiv \) and Process Contexts
\[
\begin{align*}
P \equiv D[P'], Q \equiv D[Q'], \text{ and } P' &\quad \text{CHF} \quad Q' \\
P &\quad \text{CHF} \quad Q
\end{align*}
\]

Fig. 6. Call-by-name reduction rules of CHF

reduction. As a first step we introduce some classes of contexts in Fig. 5. On the process level there are process contexts PCtxt, on expressions first monadic contexts MCtxt are used to find the next to-be-evaluated monadic action in a sequence of actions. For the evaluation of (purely functional) expressions usual (call-by-name) expression evaluation contexts ECtxt are used, and to enforce the evaluation of the (first) argument of the monadic operators takeMVar and putMVar the class of forcing contexts FCtxt is used. A functional value is an abstraction or a constructor application, a value is a functional value or a monadic expression in MExpr.

Definition 2.1 (Call-by-name Standard Reduction). The call-by-name standard reduction \(\text{CHF} \) is defined by the rules and the closure in Fig. 6. We assume that only well-formed processes are reducible.

The rules for functional evaluation include classical call-by-name \(\beta \)-reduction (rule (beta)), a rule for copying shared bindings into a needed position (rule (cpe)), rules to evaluate case- and seq-expressions (rules (case) and (seq)), and the rule (mkbinds) to move letrec-bindings into the global set of shared bindings. For monadic computations the rule (lunit) is the direct implementation of the monad and applies the first monad law to proceed a sequence of monadic actions. The rules (nmvar), (tmvar), and (pmvar) handle the MVar creation and
access. Note that a `takeMVar`-operation can only be performed on a filled MVar, and a `putMVar`-operation needs an empty MVar for being executed. The rule (fork) spawns a new concurrent thread, where the calling thread receives the name of the thread (the future) as result. If a concurrent thread finishes its computation, then the result is shared as a global binding and the thread is removed (rule (unIO)). Note that if the calling thread needs the result of the future, it gets blocked until the result becomes available.

Contextual equivalence equates two processes P_1, P_2 in case their observable behavior is indistinguishable if P_1 and P_2 are plugged into any process context. Thereby the usual observation is whether the evaluation of the process successfully terminates or does not. In nondeterministic (and also concurrent) calculi this observation is called may-convergence, and it does not suffice to distinguish obviously different processes: It is also necessary to analyze the possibility of introducing errors or non-termination. Thus we will observe may-convergence and a variant of must-convergence which is called should-convergence (see [RV07,SSS08,SSS11]).

Definition 2.2. A process P is **successful** iff it is well-formed and contains a main thread of the form $x \leftarrow \text{return } e$.

A process P may-converges (written as $P \downarrow_{\text{CHF}}$), iff it is well-formed and reduces to a successful process, i.e. $\exists P' : P \xrightarrow{\text{CHF}, \star} P' \land P'$ is successful. If $P \downarrow_{\text{CHF}}$ does not hold, then P must-diverges written as $P \uparrow_{\text{CHF}}$.

A process P should-converges (written as $P \downarrow_{\text{CHF}}$), iff it is well-formed and remains may-convergent under reduction, i.e. $\forall P' : P \xrightarrow{\text{CHF}, \star} P' \implies P' \downarrow_{\text{CHF}}$. If P is not should-convergent then we say P may-diverges written as $P \uparrow_{\text{CHF}}$.

Note that a process P is may-divergent if there is a finite reduction sequence $P \xrightarrow{\text{CHF}, \star} P'$ such that $P' \uparrow_{\text{CHF}}$. We sometimes write $P \downarrow_{\text{CHF}} P'$ (or $P \downarrow_{\text{CHF}} P'$, resp.) if $P \xrightarrow{\text{CHF}, \star} P'$ and P' is a successful (or must-divergent, resp.) process.

Definition 2.3. Contextual approximation \leq_{CHF} and contextual equivalence \sim_{CHF} on processes are defined as $\leq_{\text{CHF}} := \downarrow_{\text{CHF}} \cap \downarrow_{\text{CHF}}$ and $\sim_{\text{CHF}} := \downarrow_{\text{CHF}} \cap \downarrow_{\text{CHF}}$ where for $\chi \in \{\downarrow_{\text{CHF}}, \downarrow_{\text{CHF}}\}$:

$$P_1 \leq_{\chi} P_2 \iff \forall D \in \text{PCtx} : D[P_1]_{\chi} \implies D[P_2]_{\chi}$$

Let $C \in \text{Ctx}$ be contexts that are constructed by replacing a subexpression in a process by a (typed) context hole. Contextual approximation \leq_{CHF} and contextual equivalence \sim_{CHF} on equally typed expressions are defined as $\leq_{\text{CHF}} := \leq_{\text{CHF}} \cap \leq_{\text{CHF}}$ and $\sim_{\text{CHF}} := \downarrow_{\text{CHF}} \cap \sim_{\text{CHF}}$, where for expressions e_1, e_2 of type τ and $\chi \in \{\downarrow_{\text{CHF}}, \downarrow_{\text{CHF}}\}$: $e_1 \leq_{\chi} e_2 \iff \forall C[\tau] \in \text{Ctx} : C[e_1]_{\chi} \implies C[e_2]_{\chi}$.

2.2 The Pure Fragment PF of CHF

The calculus PF comprises the pure (i.e. non-monadic) expressions and types of CHF, i.e. expressions Expr_{PF} are the expressions Expr_{CHF} where no monadic
expression of $MExpr_{CHF}$ is allowed as (sub)-expression. The calculus PF only
has pure types $Typ_P \subseteq Typ_{CHF}$, which exclude types which have a subtype of the
form $IO \tau$ or $MVar \tau$. An expression $e \in Expr_{PF}$ is well-typed with type $\tau \in Typ_P$
iff $\Gamma \vdash e :: \tau$.

Instead of providing an operational semantics inside the expressions of PF,
we define convergence of $Expr_{PF}$ by using the (larger) calculus CHF as follows: A
PF-expression e converges (denoted by $e \downarrow_{PF}$) iff there exist $y \sim \text{return} () \downarrow_{CHF}$
for some $y \notin FV(e)$. The results in [SSS11] show that convergence does not change if we have used call-by-need evaluation in CHF (defined in [SSS11]). This allows us to show that PF is semantically equivalent (w.r.t. con-
textual equivalence) to a usual extended call-by-need $letrec$-calculus as e.g. the
calculi in [Ses97,SSSS08].

PF-contexts $Ctxt_{PF}$ are $Expr_{PF}$-expressions where a subterm is replaced by
the context hole. For $e_1,e_2 \in Expr_{PF}$ of type τ, the relation $e_1 \leq_{c,PF} e_2$ holds,
if for all $C[\cdot] \in Ctxt_{PF}$, $C[e_1] \downarrow_{PF} \implies C[e_2] \downarrow_{PF}$. Note that it is not necessary
to observe should-convergence, since the calculus PF is deterministic.

Our main goal of this paper is to show that for any $e_1,e_2 :: \tau \in Expr_{PF}$ the
following holds: $e_1 \sim_{c,PF} e_2 \implies e_1 \sim_{c,CHF} e_2$. This implies that two contextu-
ally equal pure expressions cannot be distinguished in CHF.

3 The Calculi on Infinite Expressions

In this section we introduce three calculi which use infinite expressions and we
provide the translation IT which translates finite processes $Proc_{CHF}$ into infinite
processes and also finite expressions into infinite expressions.

Using the results of [SSS11] we show at the end of this section, that we can
perform our proofs in the calculi with infinite expressions before transferring
them back to the original calculi CHF and PF with finite syntax.

3.1 The Calculus $CHFI$ and the Fragments $PFMI$ and PFI

The calculus $CHFI$ (see also [SSS11]) is similar to CHF where instead of fi-
nite expressions $Expr_{CHF}$ infinite expressions $IExpr_{PFMI}$ are used, and shared
bindings are omitted.
On Conservativity of Concurrent Haskell 11

On Conservativity of Concurrent Haskell 11

Fig. 8. Call-by-name reduction rules on infinite expressions of PFI and PFMI

The reduction $\text{CHFI} \rightarrow$ is assumed to be closed w.r.t. process contexts and structural congruence and $\text{CHFI} \rightarrow$ includes the rules (beta), (case), (seq) for functional evaluation and (lunit), (tmvar), (pnvar), (nmvar), (fork) of Fig. 6 where the contexts and subexpressions are adapted to infinite expressions and the following reduction rule:

(\text{unIOTr}) \quad D[y := \text{return} y] \xrightarrow{\text{CHFI}} (D[0])[\text{Bot}/y]

(\text{unIOTr}) \quad D[y := \text{return} s] \xrightarrow{\text{CHFI}} (D[0])[s//y]

if $s \neq y$; and the thread is not the main-thread and where D means the whole process that is in scope of y and $//$ means the infinite recursive replacement of s for y.

Fig. 9. Standard reduction in CHFI

In Fig[7] the syntax of infinite monadic expressions $\text{IExpr}_{\text{PFMI}}$ and infinite processes $\text{IProc}_{\text{CHFI}}$ is defined, while the former grammar is interpreted co-inductively, the latter is interpreted inductively, but has infinite expressions as subterms. To distinguish infinite expressions from finite expressions (on the meta-level) we always use e, e_i for finite expressions and r, s, t for infinite expressions, and also S, S_i for infinite processes, and P, P_i for finite processes. Nevertheless, in abuse of notation we will use the same meta symbols for finite as well as infinite contexts.

Compared to finite processes, infinite processes do not comprise shared bindings, but the silent process 0 is allowed. In infinite expressions letrec is not included, but some other special constructs are allowed: The constant Bot which represents nontermination and can have any type, and the constants a which are special constants and are available for every type $\text{MVar} \tau$ for any type $\tau \in \text{Typ}_{\text{CHF}}$. The calculus CHFI uses the finite types Typ_{CHF} where we assume that in every infinite expression or infinite process every subterm is labeled by its monomorphic type. An infinite expression $s \in \text{IExpr}_{\text{PFMI}}$ is well-typed with type τ, if $\Gamma \vdash s :: \tau$ cannot be disproved by applying the usual monomorphic typing rules. For an infinite process S well-typedness and also well-formedness is defined accordingly. We also use structural congruence \equiv for infinite processes which is defined in the obvious way where $S \mid 0 \equiv S$ is an additional rule.

The standard reduction $\xrightarrow{\text{CHFI}}$ of the calculus CHFI uses the call-by-name reduction rules of CHF but adapted to infinite expressions performed as infinitary rewriting. For space reasons we do not list all the reduction rules again, they are analogous to rules for CHF (see Fig. 6), but work on infinite expressions (and adapted contexts) and rule (unIO) is replaced by (unIOTr) which copies the result of a future into all positions. Since in a completely evaluated future

\begin{align*}
\text{(beta)} & \quad E[(\lambda x. s_1) s_2] \rightarrow E[s_1[s_2/x]] \\
\text{(case)} & \quad E[\text{case} \ (c \ s_1 \ldots \ s_n) \ of \ ((c \ y_1 \ldots \ y_n) \rightarrow s) \ldots] \\
& \quad \rightarrow E[s_1/y_1, \ldots, s_n/y_n] \\
\text{(seq)} & \quad E[(\text{seq} \ v \ s)] \rightarrow E[s] \quad \text{if } v \text{ is a functional value}
\end{align*}
y \Leftarrow \text{return } s$ the variable y may occur in s this copy operation perhaps must be applied recursively. We formalize this replacement:

Definition 3.1. Let x be a variable and s be a PFMI-expression (there may be free occurrences of x in s) of the same type. Then $s//x$ is a substitution that replaces recursively x by s. In case s is the variable x, then $s//x$ is the substitution $x \mapsto \text{Bot}$. The operation $//$ is also used for infinite processes with an obvious meaning.

For example, $(c\ x)//x$ replaces x by the infinite expression $(c\ (c\ (c\ \ldots)))$.

An infinite process S is **successful** if it is well-formed (i.e. all introduced variables are distinct) and if it is of the form $S \equiv \nu x_1,\ldots,x_n.(x \mathop{\Leftarrow} \text{return } s \ | \ S')$. **May-convergence** \downarrow_{CHFI}, **should-convergence** \downarrow_{CHFI} (and also \uparrow_{CHFI}, \downarrow_{CHFI}) as well as contextual equivalence \sim_{CHFI} and contextual preorder \leq_{CHFI} for processes as well as for infinite expressions are defined analogously to CHF where $\rightarrow_{\text{CHFI}}$ is used instead of \rightarrow_{CHF}.

We also consider the pure fragment of CHFI, called the calculus **PFI**, which has as syntax infinite expressions $\text{IExpr}_{\text{PFI}} \subset \text{IExpr}_{\text{PFMI}}$, and contains all infinite expressions of $\text{IExpr}_{\text{PFMI}}$ that do not have monadic operators ms and also no \mathbf{MVar}-constants a at any position. As a further calculus we introduce the calculus **PFMI** which has exactly the set $\text{IExpr}_{\text{PFMI}}$ as syntax. In **PFMI** and **PFI** a **functional value** is an abstraction or a constructor application (except for the constant Bot). A **value** of **PFI** is a functional value and in **PFMI** a functional value or a monadic expression.

Typing for **PFI** and **PFMI** is as explained for **CHFI** where in the calculus **PFI** only the pure types Typ_p are available. Standard reduction in **PFI** and in **PFMI** is a call-by-name reduction using the rules shown in Fig.\[8\] where E are call-by-name reduction contexts with infinite expressions as subterms. Note that the substitutions used in (beta) and (case) may substitute infinitely many occurrences of variables. For **PFMI** reduction cannot extract subexpressions from monadic expressions, hence they behave similarly to constants.

The (normal-order) call-by-name reduction is written $s \rightarrow_{\text{PFMI}} t$ (resp.), and $s \rightarrow_{\text{PFMI}} t$ (resp.) means that there is a value t, such that $s \rightarrow_{\text{PFMI}} t$ (resp.) If we are not interested in the specific value t we also write $s \rightarrow_{\text{PFMI}} t$, (resp.) Contexts $\text{ICtxt}_{\text{PFMI}}$ (resp.) of **PFMI** (**PFI** resp.) comprise all infinite expressions with a single hole at an expression position.

Definition 3.2. Contextual equivalence w.r.t. **PFI** is defined as $s \sim_{c,\text{PFI}} t$ iff $\forall C::\tau \in \text{ICtxt}_{\text{PFI}} : C[s] \downarrow_{\text{PFI}} \Longrightarrow C[t] \downarrow_{\text{PFI}}$.

As a further notation we introduce the set $\text{IExpr}_{\text{PFMI}}$ (resp.) as the set of **closed** infinite expressions of $\text{IExpr}_{\text{PFMI}}$ (resp.).
3.2 The Translation IT

We will now use a translation from [SSS11] which translates CHF-processes into CHFI-processes by removing letrec- and shared bindings. It is known that the translation does not change the convergence behavior of processes.

Definition 3.3 ([SSS11]). Let \(P \) be a process. The translation \(IT : \text{Proc} \rightarrow \text{IProc} \) translates a process \(P \) into its infinite tree process \(IT(P) \). It recursively unfolds all bindings of letrec- and top-level bindings where cyclic variable chains \(x_1 = x_2, \ldots, x_n = x_1 \) are removed and all occurrences of \(x_i \) on other positions are replaced by the new constant Bot. Top-level bindings are replaced by a 0-component. Free variables, futures, and names of MVars are kept in the tree (are not replaced). Equivalence of infinite processes is syntactic, where we do not distinguish \(\alpha \)-equal trees. Similarly, IT is also defined for expressions to translate PFI-expressions into PF-expressions.

Theorem 3.4 ([SSS11]). For all processes \(P \in \text{Proc} \) it holds:

\[P \downarrow_{\text{CHF}} \iff IT(P) \downarrow_{\text{CHFI}} \]

An analogous result can also be derived for the pure fragments of CHF and CHFI:

Proposition 3.5. Let \(e_1, e_2 \) be PF-expressions. Then \(e_1 \leq_{c,PF} e_2 \) iff

\[IT(e_1) \leq_{c,PF} IT(e_2) \]

Proof. From Theorem 3.4 it easily follows that \(IT(e_1) \leq_{c,PF} IT(e_2) \) implies \(e_1 \leq_{c,PF} e_2 \). For the other direction, we have to note that there are infinite expressions that are not \(IT(\cdot) \)-images of PF-expressions. We give a sketch of the proof: Let \(e_1, e_2 \) be PF-expressions with \(e_1 \leq_{c,PF} e_2 \). Let \(C \) be a PFI-context such that \(C[IT(e_1)] \downarrow_{PF} \). We have to show that also \(C[IT(e_2)] \downarrow_{PF} \). Since \(C[IT(e_1)] \downarrow_{PF} \) by a finite reduction, there is a finite context \(C' \) such that \(C' \) can be derived from \(C \) by replacing subexpressions by Bot, with \(C'[IT(e_1)] \downarrow_{PF} \). Since equivalence of convergence holds and since \(C' \) is invariant under \(IT \), this shows \(C'[e_1] \downarrow_{PF} \). The assumption shows \(C'[e_2] \downarrow_{PF} \). This implies \(C'[IT(e_2)] \downarrow_{PF} \). Standard reasoning shows that also \(C[IT(e_2)] \downarrow_{PF} \).

As the next step we will show that CHFI conservatively extends PFI. Theorem 3.4 and Proposition 3.5 will then enable us to conclude that CHF conservatively extends PF.

4 Simulation in the Calculi PFI and PFMI

We will now consider a simulation relation in the two calculi PFI and PFMI. Using Howe’s method it is possible to show that both similarities are precongruences. For space reasons the congruence proof can be found in the appendix. We will then show that PFMI extends PFI conservatively w.r.t. similarity.
4.1 Similarities in PFMI and PFI are Precongruences

We define similarity for both calculi PFMI and PFI. For simplicity, we sometimes use as e.g. in \[\text{How89}\] the higher-order abstract syntax and write $\xi(\ldots)$ for an expression with top operator ξ, which may be all possible term constructors, like case, application, a constructor, seq, or a lambda, and θ for an operator that may be the head of a value, i.e. a constructor or monadic operator or a lambda. Note that ξ and θ may represent also the binding λ using $\lambda(x.s)$ as representing $\lambda x.s$. In order to stick to terms, and be consistent with other papers like \[\text{How89}\], we assume that removing the top constructor λx. in relations is done after a renaming. For example, $\lambda x.s \mu \lambda y.t$ is renamed before further treatment to $\lambda z.s[z/x] \mu \lambda z.t[z/y]$ for a fresh variable z. Hence $\lambda x.s \mu \lambda x.t$ means $s \mu^o t$ for open expressions s,t, if μ is a relation on closed expressions. Similarly for case, where the first argument is without scope, and the case alternative like $(c x_1 \ldots x_n \rightarrow s)$ is seen as s with a scoping of x_1, \ldots, x_n. We assume that binary relations η relate expressions of equal type. A substitution σ that replaces all free variables by closed infinite expressions is called a closing substitution.

Definition 4.1. Let η be a binary relation on closed infinite expressions. Then the open extension η^o on all infinite expressions is defined as $s \eta^o t$ for any expressions s,t iff for all closing substitutions $\sigma : \sigma(s) \eta \sigma(t)$. Conversely, for binary relations μ on open expressions, $(\mu)^c$ is the restriction to closed expressions.

Lemma 4.2. For a relation η on closed expressions, the equation $((\eta)^o)^c = \eta$ holds, and $s \eta^o t$ implies $\sigma(s) \eta^o \sigma(t)$ for any substitution σ. For a relation μ on open expressions the inclusion $\mu \subseteq ((\mu)^c)^o$ is equivalent to $s \mu t \implies \sigma(s) (\mu)^c \sigma(t)$ for all closing substitutions σ.

Definition 4.3. Let $\leq_{b,PFMI}$ (called similarity) be the greatest fixpoint, on the set of binary relations over closed (infinite) expressions, of the following operator F_{PFMI} on binary relations η over closed expressions IExpr_{PFMI}:

For $s,t \in \text{IExpr}_{PFMI}$ the relation $s F_{PFMI} \eta t$ holds iff $s \downarrow_{PFMI} \theta(s_1, \ldots, s_n)$ implies that there exist t_1, \ldots, t_n such that $t_i \downarrow_{PFMI} \theta(t_1, \ldots, t_n)$ and $s_i \eta^o t_i$ for $i = 1, \ldots, n$.

The operator F_{PFMI} is monotone, hence the greatest fixpoint $\leq_{b,PFMI}$ exists.

Proposition 4.4 (Coinduction). The principle of coinduction for the greatest fixpoint of F_{PFMI} shows that for every relation η on closed expressions with $\eta \subseteq F_{PFMI}(\eta)$, we derive $\eta \subseteq \leq_{b,PFMI}$. This also implies $(\eta)^o \subseteq (\leq_{b,PFMI})^o$.

Similarly, Definition 4.3 and Proposition 4.4 can be transferred to PFI, where we use $\leq_{b,PFI}$ and F_{PFI} as notation. Determinism of $\xRightarrow{\text{PFMI}}$ implies:

Lemma 4.5. If $s \xRightarrow{\text{PFMI}} s'$, then $s'^0 \leq_{b,PFMI} s \wedge s \leq_{b,PFMI} s'^0$.

In the appendix (Theorem B.16) we show that $\leq_{b,PFMI}$ and $\leq_{b,PFI}$ are precongruences by adapting Howe’s method \[\text{How89}, \text{How96}\] to the infinite syntax of the calculi.
Theorem 4.6. $\leq_{b,PFMI}^o$ is a precongruence on infinite expressions IExpr_{PFMI} and $\leq_{c,PFI}^o$ is a precongruence on infinite expressions IExpr_{PFI}. If σ is a substitution, then $s \leq_{b,PFMI}^o t$ implies $\sigma(s) \leq_{b,PFMI}^o \sigma(t)$ and also $s \leq_{b,PFI}^o t$ implies $\sigma(s) \leq_{b,PFI}^o \sigma(t)$.

4.2 Behavioral and Contextual Preorder in PFI

We now investigate the relationships between the behavioral and contextual preorders in the two calculi PFI and $PFMI$ of infinite expressions. We show that in PFI, the contextual and behavioral preorder coincide. Note that this is wrong for $PFMI$, because there are expressions like return True and return False that cannot be contextually distinguished since $PFMI$ cannot look into the components of these terms.

Lemma 4.7. $\leq_{b,PFI}^o \subseteq \leq_{c,PFI}$.

Proof. Let s, t be expressions with $s \leq_{b,PFI}^o t$ such that $\mathbb{C}[s] \downarrow_{PFI}$. Let σ be a substitution that replaces all free variables of $\mathbb{C}[s], \mathbb{C}[t]$ by \bot. The properties of the call-by-name reduction show that also $\sigma(\mathbb{C}[s]) \downarrow_{PFI}$. Since $\sigma(\mathbb{C}[s]) = \sigma(\mathbb{C})[\sigma(s)]$, $\sigma(\mathbb{C}[t]) = \sigma(\mathbb{C})[\sigma(t)]$ and since $\sigma(s) \leq_{b,PFI}^o \sigma(t)$, we obtain from the precongruence property of $\leq_{b,PFI}^o$ that also $\sigma(\mathbb{C}[s]) \leq_{b,PFI}^o \sigma(\mathbb{C}[t])$. Hence $\sigma(\mathbb{C}[t]) \downarrow_{PFI}$. This is equivalent to $\mathbb{C}[t] \downarrow_{PFI}$, since free variables are replaced by \bot, and thus they cannot overlap with redexes. Hence $\leq_{b,PFI}^o \subseteq \leq_{c,PFI}$.

Lemma 4.8. In PFI, the contextual preorder on expressions is contained in the behavioral preorder on open expressions, i.e. $\leq_{c,PFI} \subseteq \leq_{b,PFI}^o$.

Proof. We show that $(\leq_{c,PFI})^c$ satisfies the fixpoint condition, i.e. $(\leq_{c,PFI})^c \subseteq F_{PFI}(\leq_{c,PFI})^c$; Let s, t be closed and $s \leq_{c,PFI} t$. If $s \downarrow_{PFI} \theta(s_1, \ldots, s_n)$, then also $t \downarrow_{PFI}$. Using the appropriate case-expressions as contexts, it is easy to see that $t \downarrow_{PFI} \theta(t_1, \ldots, t_n)$. Now we have to show that $s_i \leq_{c,PFI}^o t_i$. This could be done using an appropriate context \mathbb{C}_i that selects the components, i.e. $\mathbb{C}_i[s] \stackrel{pf}_{\mathbb{C}_i} \rightarrow s_i$ and $\mathbb{C}_i[t] \stackrel{pf}_{\mathbb{C}_i} \rightarrow t_i$. Since reduction preserves similarity and Lemma 4.7 show that $r \longrightarrow r'$ implies $r \leq_{c,PFI} r'$ holds. Moreover, since $\leq_{c,PFI}^o$ is obviously a precongruence, we obtain that $s_i \leq_{c,PFI}^o t_i$. Thus the proof is finished.

Concluding, Lemmas 4.7 and 4.8 imply:

Theorem 4.9. In PFI the behavioral preorder is the same as the contextual preorder on expressions, i.e. $\leq_{b,PFI}^o = \leq_{c,PFI}$.

In the proofs in Section 5 for the language $PFMI$ the following technical lemma on $\leq_{b,PFI}^o$ is required. In the appendix (Lemma 4.18) we prove:

Lemma 4.10. Let x be a variable and s_1, s_2, t_1, t_2 be $PFMI$-expressions with $s_i \leq_{b,PFMI}^o t_i$ for $i = 1, 2$. Then $s_2[s_1 \rightarrow x] \leq_{b,PFMI}^o t_2[t_1 \rightarrow x]$.

4.3 Behavioral Preorder in PFMI

We now show that for PFMI-expressions s, t, the behavioral preorders w.r.t. PFMI and PFI are equivalent, i.e., that $\leq_{b,PFMI}$ is a conservative extension of $\leq_{b,PFI}$ when extending the language PFI to PFMI. This is not immediate, since the behavioral preorders w.r.t. PFMI requires to test abstractions on more closed expressions than PFI. Put differently, the open extension of relations is w.r.t. a larger set of closing substitutions.

Definition 4.11. Let $\phi : PFMI \rightarrow PFI$ be the mapping with $\phi(x) := x$, if x is a variable; $\phi(c \ s_1 \ldots s_n) := ()$, if c is a monadic operator; $\phi(a) := ()$, if a is a name of an MVar; and $\phi(\xi(s_1, \ldots, s_n)) := \xi(\phi(s_1), \ldots, \phi(s_n))$ for any other operator ξ. The types are translated by replacing all $(\tau_0 \tau)$ and $(\forall \tau)$-types by type (τ) and retaining the other types.

This translation is compositional, i.e., it translates along the structure: $\phi([C]|s) = \phi(C)[\phi(s)]$ if $\phi(C)$ is again a context, or $\phi(C|s) = \phi(C)$ if the hole of the context is removed by the translation. In the following we write $\phi(C)[\phi(s)]$ also in the case that the hole is removed, in which case we let $\phi(C)$ be a constant function. Now the following lemma is easy to verify:

Lemma 4.12. For all closed PFMI-expressions s it holds: $s \downarrow_{PFMI}$ iff $\phi(s) \downarrow_{PFI}$, and if $s \downarrow_{PFMI} \theta(s_1, \ldots, s_n)$ then $\phi(s) \downarrow_{PFI} \phi(\theta(s_1, \ldots, s_n))$. Conversely, if $\phi(s) \downarrow_{PFI} \phi(\theta(s_1, \ldots, s_n))$, then $s \downarrow_{PFMI} \theta(s'_1, \ldots, s'_n)$ such that $\phi(s'_i) = s_i$ for all i.

Now we show that $\leq_{b,PFI}$ is the same as $\leq_{b,PFMI}$ restricted to PFMI-expressions using coinduction:

Lemma 4.13. $\leq_{b,PFI} \subseteq \leq_{b,PFMI}$.

Proof. Let ρ be the relation $\{(s, t) \mid \phi(s) \leq_{b,PFI} \phi(t)\}$ on closed PFMI-expressions, i.e., $s \rho t$ holds iff $\phi(s) \leq_{b,PFI} \phi(t)$. We show that $\rho \subseteq F_{PFMI}(\rho)$. Assume $s \rho t$ for $s, t \in IExpr_{PFMI}$. Then $\phi(s) \leq_{b,PFI} \phi(t)$. If $\phi(s) \downarrow_{PFI} \phi(\theta(s_1, \ldots, s_n))$, then also $\phi(t) \downarrow_{PFI} \phi(\theta(s_1, \ldots, s_n))$ and $s_i \leq_{b,PFI} t_i$. Now let σ be a PFMI-substitution such that $\sigma(s_i), \sigma(t_i)$ are closed. Then $\phi(\sigma)$ is a PFI-substitution, hence $\phi(\sigma)(s_i) \leq_{b,PFI} \phi(\sigma)(t_i)$. We also have $\phi(\sigma)(s_i) = \phi(\sigma)(s_i), \phi(\sigma)(t_i) = \phi(\sigma)(t_i)$, since s_i, t_i are PFMI-expressions and since ϕ is compositional. The relation $s_i \rho^x t_i$ w.r.t. PFMI is equivalent to $\sigma(s_i) \rho \sigma(t_i)$ for all closing PFMI-substitutions σ, which in turn is equivalent $\phi(\sigma)(s_i) \leq_{b,PFI} \phi(\sigma)(s_i))$. Hence $s_i \rho^x t_i$ for all i where the open extension is w.r.t. PFMI. Thus $\rho \subseteq F_{PFMI}(\rho)$ and hence $\rho \subseteq \leq_{b,PFMI}$.

Proposition 4.14. Let $s, t \in IExpr_{PFMI}$. Then $s \leq_{b,PFI} t$ iff $s \leq_{b,PFMI} t$.

Proof. The relation $s \leq_{b,PFMI} t$ implies $s \leq_{b,PFI} t$, since the fixpoint w.r.t. F_{PFMI} is a subset of the fixpoint of F_{PFI}. The other direction is Lemma 4.13.

Proposition 4.15. Let x be a variable of type $(\forall \tau)$ for some τ, and let s be a PFMI-expression of the same type such that $x \leq_{b,PFI} s$. Then $s \downarrow_{PFMI}$.
Proof. Let \(\sigma \) be a substitution such that \(\sigma(x) = a \) where \(a \) is a name of an MVar, \(a \) does not occur in \(s \), \(\sigma(s) \) is closed and such that \(\sigma(x) \leq_{b,PFMI} \sigma(s) \). We can choose \(\sigma \) in such a way that \(\sigma(y) \) does not contain \(a \) for any variable \(y \neq x \). By the properties of \(\leq_{b,PFMI} \), we obtain \(\sigma(s) \leq_{PFMI} a \). Since the reduction rules of \(PFMI \) cannot distinguish between \(a \) or \(x \), and since \(\sigma(y) \) does not contain \(a \), the only possibility is that \(s \) reduces to \(x \).

5 Conservativity of \(PF \) in \(CHF \)

In this section we will first show that \(s \leq_{b,PFMI} t \) implies \(s \leq_{c,CHFI} t \) and then we transfer the results back to the calculi with finite expressions and processes and derive our main theorem.

5.1 Conservativity of \(PFMI \) in \(CHFI \)

We will show that \(s \leq_{b,PFMI} t \) implies \(C[s] \downarrow_{CHFI} \implies C[t] \downarrow_{CHFI} \) and \(C[s] \uparrow_{CHFI} \implies C[t] \uparrow_{CHFI} \) for all infinite process contexts \(C[\tau] \) with an expression hole and \(s, t : \tau \).

In the following, we drop the distinction between MVar-constants and variables. This change does not make a difference in convergence behavior.

Let \(GCtxt \) be process-contexts with several holes, where the holes appear only in subcontexts \(x \leftarrow [\cdot] \) or \(x \cdot [\cdot] \). We assume that \(G \in GCtxt \) is in prenex normal form (i.e. all \(\nu \)-binders are on the top), that we can rearrange the concurrent processes as in a multiset exploiting that the parallel composition is associative and commutative, and we write \(\nu X. G' \) where \(\nu X \) represents the whole \(\nu \)-prefix. We will first consider \(GCtxt \)-contexts and later lift the result to all contexts of \(CHFI \).

Proposition 5.1. Let \(s_i, t_i : \tau_i \) be PFMI-expressions with \(s_i \leq_{b,PFMI} t_i \), and let \(G[\tau_1, \ldots, \tau_n] \in GCtxt \). Then \(G[s_1, \ldots, s_n] \downarrow_{CHFI} \implies G[t_1, \ldots, t_n] \downarrow_{CHFI} \).

Proof. Let \(G[s_1, \ldots, s_n] \downarrow_{CHFI} \). We use induction on the number of reductions of \(G[s_1, \ldots, s_n] \) to a successful process. In the base case \(G[s_1, \ldots, s_n] \) is successful. Then either \(G[t_1, \ldots, t_n] \) is also successful, or \(G = \nu X. x \leftarrow \nu X. G' \) and w.l.o.g. this is the hole with index 1, and \(s_1 = \text{return } s'_1 \). Since \(s_1 \leq_{b,PFMI} t_1 \), there is a reduction \(t_1 \mathbin{\text{pfmi}} \text{return } t'_1 \). This reduction is also a \(CHFI \)-standard reduction of \(G[t_1, \ldots, t_n] \) to a successful process.

Now let \(G[s_1, \ldots, s_n] \mathbin{\text{chfi}} S_1 \) be the first step of a reduction to a successful process. We analyze the different reduction possibilities:

If the reduction is within some \(s_i \), i.e. \(s_i \rightarrow s'_i \) by (beta), (case) or (seq), then we can use induction, since the standard-reduction is deterministic within the expression, and a standard reduction of \(G[s_1, \ldots, s_n] \); and since \(s_i \mathbin{\text{chfi}} s'_i \).

If the reduction is \(\text{lunit} \), i.e. \(G = \nu X. x \leftarrow G' \), where \(s_1 = M_1[\text{return } r_1 \mathbin{\text{rseq}} r_2] \), and the reduction result of \(G[s_1, \ldots, s_n] \) is \(G = \nu X. x \leftarrow M_1[r_2 r_1] \cdot G'[s_2, \ldots, s_n] \). We have \(s_1 \mathbin{\text{chfi}} t_1 \). Let \(M_1 = \)
This implies also a standard reduction of the whole process. The corresponding results (unIOTr) reduction is applicable. Assume that the substitutions are as for (lunit) show that the first reduction steps permit to apply the induction hypothesis. We use induction, since the reduction is a standard reduction of M. Let \(M_2 := M_{2,1} \ldots M_{2,k} \).

This implies \(t_1 \xrightarrow{\text{CHFI},*} \text{return } t'_1 \) with \(r_1 \leq_{b,\text{PFMI}} t'_1 \). This reduction is also a standard reduction of the whole process. The corresponding results are \(t_2 \rightarrow r_1 \) and \(t'_2 \rightarrow t''_1 \). Thus there is a reduction sequence \(G[t_1, \ldots, t_n] \xrightarrow{\text{CHFI},*} \nu X. x = M_2[t'_2 \downarrow t''_1] \mid G'[s_2, \ldots, s_n]. \) Since \(\leq_{b,\text{PFMI}} \) is a precongruence we have that \(M_1[r_2 \downarrow r_1] \leq_{b,\text{PFMI}} M_2[t'_2 \downarrow t''_1] \) satisfy the induction hypothesis.

For the reductions (tmvar), (pmvar), (nmvar), or (fork) the same arguments as for (lunit) show that the first reduction steps permit to apply the induction hypothesis with the following differences: For the reductions (tmvar) and (pmvar) Proposition [4.15] is used to show that the reduction of \(G[t_1, \ldots, t_n] \) also leads to an MVar-variable in the case \(x \leq_{b,\text{PFMI}} t \). Also the G-hole is transported between the thread and the data-component of the MVar. In case of (fork), the number of holes of the successor \(G' \) of \(G \) may be increased.

For (unIOTr) as argued above, \(G[t_1, \ldots, t_n] \) can be reduced such that also a (unIOTr) reduction is applicable. Assume that the substitutions are \(\sigma_s = s'//x \) and \(\sigma_t = t'//x \) for \(G[s_1, \ldots, s_n] \) and the reduction-successor of \(G[t_1, \ldots, t_n] \).

Lemma [4.10] shows that \(\sigma_s(s'') \leq_{b,\text{PFMI}} \sigma_t(t'') \) whenever \(s'' \leq_{b,\text{PFMI}} t'' \), and thus the induction hypothesis can be applied. In this step, the number of holes of \(G \) may increase, such that also expression components of MVars may be holes, since the replaced variable \(x \) may occur in several places.

Example 5.2. Let \(s := \text{Bot}, \) \(t := \text{takeMVar } x, \) and \(G[\cdot] := \upsilon \xrightarrow{\text{fmain}} \) \(\text{takeMVar } x \mid y \equiv \cdot \mid \text{x me} \).

Then \(s \leq_{\text{b,PFMI}} t \). \(G[s]\upsilon \mid \text{CHFI} \), but \(G[t]\upsilon \mid \text{CHFI} \).

Hence \(s \leq_{\text{b,PFMI}} t \) and \(G[s]\upsilon \mid \text{CHFI} \) do not imply \(G[t]\upsilon \mid \text{CHFI} \).

Proposition 5.3. Let \(s_i, t_i \) be PFMI-expressions with \(s_i \sim_{b,\text{PFMI}} t_i \), and let \(G \in \text{GCxt} \).

Then \(G[s_1, \ldots, s_n]\upsilon \mid \text{CHFI} \Rightarrow G[t_1, \ldots, t_n]\upsilon \mid \text{CHFI} \).

Proof. We prove the converse implication: \(G[t_1, \ldots, t_n]\upsilon \mid \text{CHFI} \Rightarrow G[s_1, \ldots, s_n]\upsilon \mid \text{CHFI} \).

Let \(G[t_1, \ldots, t_n]\upsilon \mid \text{CHFI} \). We use induction on the number of reductions of \(G[t_1, \ldots, t_n] \) to a must-divergent process. In the base case \(G[t_1, \ldots, t_n]\upsilon \mid \text{CHFI} \).

Proposition [5.1] shows \(G[s_1, \ldots, s_n]\upsilon \mid \text{CHFI} \).

Now let \(G[t_1, \ldots, t_n] \xrightarrow{\text{CHFI}} S_1 \) be the first reduction of a reduction sequence \(R \) to a must-divergent process. We analyze the different reduction possibilities:

If the reduction is within some \(t_i \), i.e. \(t_i \rightarrow t'_i \) and hence \(t_i \sim_{b,\text{PFMI}} t'_i \), then we use induction, since the reduction is a standard-reduction of \(G[t_1, \ldots, t_n] \).

Now assume that the first reduction step of \(R \) is (lunit). I.e., \(G = \nu X. x \equiv \cdot \mid G' \), where \(t_1 = M[\text{return } r_1 \ggg r_2] \), and the reduction result of \(G[t_1, \ldots, t_n] \) is \(G = \nu X. x \equiv M[r_2 \rightarrow r_1] \mid G'[t_2, \ldots, t_n] \).

We have \(s_1 \sim_{b,\text{PFMI}} t_1 \).

By induction on the reductions and the length of the path to the hole of \(M[\cdot] \), we see that \(s_1 \rightarrow s_1 \rightarrow M_1[\text{return } r'_1 \ggg r'_2] \). Then we can perform the (lunit)-reduction and obtain \(M_1[r'_2 r'_1] \). Since \(r'_2 r'_1 \sim_{b,\text{PFMI}} r_2 r_1 \), we obtain a reduction result that satisfies the induction hypothesis.
Theorem 5.4. Let \(\top \top \) can also be used in this case. Let \(\top \top \) be a process context of \(C \).

Proof. That for the substitutions \(\sigma \) of previous case and the proof of Proposition 5.1. For (unIOTr), Lemma 4.10 shows that for expressions \(r, r' \) with \(r \sim_0^{PFMI} r' \), hence the induction can also be used in this case.

\[\square \]

Theorem 5.4. Let \(s, t \in IExpr_{PFMI} \) with \(s \sim_0^{PFMI} t \). Then \(s \sim_{c, CHFI} t \).

Proof. Let \(s, t \in IExpr_{PFMI} \) with \(s \sim_0^{PFMI} t \). We only show \(s \leq_{c, CHFI} t \) since the other direction follows by symmetry. We first consider may-convergence: Let \(C \) be a process context of \(CHFI \) with an expression hole such that \(C[s] \downarrow_{CHFI} \). Let \(C = C_1[|C_2] \) such that \(C_2 \) is the maximal expression context. Then \(C_2[s] \sim_{b, PFMI} C_2[t] \) since \(\sim_{b, PFMI} \) is a congruence. Since \(C_1 \) is a \(GCtxt \)-context, Proposition 5.1 implies \(C_1[C_2[t]] \downarrow_{CHFI} \), i.e. \(C[t] \downarrow_{CHFI} \). Showing \(C[s] \downarrow_{CHFI} \Rightarrow C[t] \downarrow_{CHFI} \) follows by the same reasoning using Proposition 5.3.

5.2 The Main Theorem: Conservativity of \(PF \) in \(CHF \)

We now prove that contextual equality in \(PF \) implies contextual equality in \(CHF \), i.e. \(CHF \) is a conservative extension of \(PF \) w.r.t. contextual equivalence.

Main Theorem 5.5 Let \(e_1, e_2 \in Expr_{PF} \). Then \(e_1 \sim_{c, PF} e_2 \iff e_1 \sim_{c, CHF} e_2 \).

Proof. One direction is trivial. For the other direction the reasoning is as follows: Let \(e_1, e_2 \) be \(PF \)-expressions. Then Proposition 3.5 shows that \(e_1 \sim_{c, PF} e_2 \) is equivalent to \(IT(e_1) \sim_{c, PF} IT(e_2) \). Now Theorem 4.9 and Proposition 4.14 show that \(IT(e_1) \sim_{b, PFMI} IT(e_2) \). Then Theorem 5.4 shows that \(IT(e_1) \sim_{c, CHFI} IT(e_2) \). Finally, from Theorem 3.4 it easily follows that \(e_1 \sim_{c, CHF} e_2 \). \(\square \)

6 Lazy Futures Break Conservativity

Having proved our main result, we now show that there are innocent looking extensions of \(CHF \) that break the conservativity result. One of those are so-called lazy futures. The equivalence \(\text{seq } e_1 e_2 \) and \(\text{seq } e_2 (\text{seq } e_1 e_2) \) used by Kiselyov’s counterexample \(\text{[Kis09]} \), holds in the pure calculus and in \(CHF \) (see Appendix). This implies that Kiselyov’s counterexample cannot be transferred to \(CHF \).

Let the calculus \(CHFL \) be an extension of \(CHF \) by a lazy future construct, which implements the idea of implementing futures that can be generated as non-evaluating, and which have to be activated by an (implicit) call from another future. We show that this construct would destroy conservativity.

We add a process component \(x \xleftarrow{laz} e \) which is a lazy future, i.e. a thread which can not be reduced unless its evaluation is forced by another thread. On the expression level we add a construct \(\text{lfuture } \) of type \(\text{IO } \tau \rightarrow \text{IO } \tau \). The operational semantics is extended by two additional reduction rules:

\[
\begin{align*}
\text{Ifork } y & \Leftarrow M[\text{lfuture } e] \rightarrow y \Leftarrow M[\text{return } x] \mid x \xleftarrow{laz} e \\
\text{force } y & \Leftarrow M[\text{F}[x]] \mid x \xleftarrow{laz} e \rightarrow y \Leftarrow M[\text{F}[x]] \mid x \Leftarrow e
\end{align*}
\]
The rule (lfork) creates a lazy future. Evaluation can turn a lazy future into a concurrent future if its value is demanded by rule (force).

In CHF the equation $(\text{seq } e_2 (\text{seq } e_1 e_2)) \sim_{\text{Bool}} (\text{seq } e_1 e_2)$ for $e_1, e_2 :: \text{Bool}$ holds (see above) The equation does not hold in CHFL. Consider the following context C that uses lazy futures and distinguishes the two expressions:

$$C = x \leftarrow \text{lazy } \text{takeMVar } v >>\lambda w. C_1[v]$$
$$| y \leftarrow \text{lazy } \text{takeMVar } v >>\lambda w. C_1[v] | v \cdot \text{True}$$
$$| z \leftarrow \text{case } [] \text{ of } (\text{True } \rightarrow \bot) (\text{False } \rightarrow \text{return True})$$

$C_1 = (\text{putMVar } [] \text{ False } >>\lambda \rightarrow \text{return } w)$

Then $C[\text{seq } y (\text{seq } x y)]$ must-diverges, since its evaluation (deterministically) results in $z \leftarrow \text{main } \bot | x = \text{False} | y = \text{True} | v \cdot \text{False}$. On the other hand $C[\text{seq } x y] \downarrow_{\text{CHFL}}$, since it evaluates to $z \leftarrow \text{main } \text{return True } | x = \text{True} | y = \text{False} | v \cdot \text{False}$ where again the evaluation is deterministic. Thus context C distinguishes $\text{seq } x y$ and $\text{seq } y (\text{seq } x y)$ w.r.t. \sim_c.

Hence adding an unsafeInterleaveIO-operator to CHF results in the loss of conservativity, since lazy futures can be implemented in CHF (or even in Concurrent Haskell) using unsafeInterleaveIO to delay the thread creation:

$$\text{lfuture } \text{act } = \text{unsafeInterleaveIO } (\text{\{do ack } \leftarrow \text{newEmptyMVar}
\text{ thread } \leftarrow \text{forkIO}(\text{act } >>\text{putMVar ack})
\text{ takeMVar ack})$$

7 Conclusion

We have shown that the calculus CHF modelling most features of Concurrent Haskell with unsafeInterleaveIO is a conservative extension of the pure language, and exhibited a counterexample showing that adding the unrestricted use of unsafeInterleaveIO is not. This complements our results in [SSS11]. Future work is to rigorously show that our results can be extended to polymorphic typing. We also will analyze further extensions like killing threads, and synchronous and asynchronous exceptions (as in [MJMR01, Pey01]), where our working hypothesis is that killing threads and (at least) synchronous exceptions retain our conservativity result.

References

A Typing Rules for CHF

\[
\begin{align*}
\Gamma(x) &= \tau & \Gamma(x) &= \tau, \Gamma \vdash e :: \text{IO } \tau \\
\Gamma \vdash x :: \tau & \quad \Gamma \vdash x \in e :: \text{wt} & \Gamma \vdash x = e :: \text{wt} \\
\Gamma \vdash P :: \text{wt} & \quad \Gamma \vdash P_1 :: \text{wt} & \quad \Gamma \vdash P_2 :: \text{wt} \\
\Gamma \vdash P_1 \parallel P_2 :: \text{wt} & \quad \Gamma \vdash \text{MVar } \tau, \Gamma \vdash e :: \tau & \quad \Gamma \vdash \text{MVar } \tau \\
\Gamma \vdash \nu x.P :: \tau & \quad \Gamma \vdash e :: \tau & \quad \Gamma \vdash e :: \text{MVar } \tau \\
\Gamma \vdash \text{putMVar } e_1 e_2 :: \text{IO } () & \quad \Gamma \vdash \text{return } e :: \text{IO } \tau & \quad \Gamma \vdash \text{takeMVar } e :: \text{IO } \tau \\
\forall i : \Gamma \vdash e_i :: \tau_i & \quad \Gamma \vdash e :: \tau & \quad \Gamma \vdash e :: \tau \\
\Gamma \vdash \text{letrec } x_1 = e_1, \ldots, x_n = e_n \text{ in } e :: \tau & \quad \Gamma \vdash \text{seq } e_1 e_2 :: \tau_2 \\
\Gamma \vdash (\lambda x.e) :: \tau_1 \rightarrow \tau_2 & \quad \Gamma \vdash e :: \text{IO } \tau & \quad \Gamma \vdash (\text{seq } e_1 e_2) :: \tau_2 \\
\Gamma \vdash e :: \tau_1 \quad \Gamma \vdash e :: \tau_2 & \quad \Gamma \vdash (\text{case } e \text{ of } (\text{case } t \xi_1 x_1 \ldots x_{n_1} \rightarrow e_1) \ldots (\text{case } t \xi_{n_1} x_{n_1} \ldots x_{n_1 n_2} \rightarrow e_{n_2})) :: \tau_2 \\
\end{align*}
\]

Fig. 10. Monomorphic typing rules for CHF

The typing rules of CHF are in Fig. A

B The Congruence Proof

In this section we show that \(\leq_b\) \(\text{PFMI} \) and \(\leq_b\) \(\text{PFI} \) are precongruences. We omit the proof for the calculus \(\text{PFI} \) and only consider \(\text{PFMI} \), since the proofs for \(\text{PFI} \) are completely analogous. The proof method used below for showing that similarity is a precongruence is derived from Howe \cite{How89}, though extended to infinite expressions. For a developed proof for may-convergence in a non-deterministic setting with finite expressions, see \cite{MSS10}.

The fixpoint property of \(\leq_b\) \(\text{PFMI} \) implies:

Lemma B.1. For closed values \(\theta(s_1 \ldots s_n), \theta(t_1 \ldots t_n) \), we have \(\theta(s_1 \ldots s_n) \leq_b \theta(t_1 \ldots t_n) \) \iff \(s_i \leq_b^{\text{PFMI}} t_i \).

In the concrete syntax, if \(\theta \) is a constructor or a monadic operator, then \(\theta(s_1 \ldots s_n) \leq_b^{\text{PFMI}} \theta(t_1 \ldots t_n) \) \iff \(s_i \leq_b^{\text{PFMI}} t_i \), and \(\lambda x.s \leq_b^{\text{PFMI}} \lambda x.t \) \iff \(s \leq_b^{\text{PFMI}} t \).

Lemma B.2. The relations \(\leq_b^{\text{PFMI}} \) and \(\leq_b^{\text{PFI}} \) are reflexive and transitive.
Proof. Reflexivity is obvious. Transitivity follows by showing that \(\eta := \leq_{b,PFMI} \cup (\leq_{b,PFMI} \circ \leq_{b,PFMI}) \) satisfies \(\eta \subseteq F_{PFMI}(\eta) \) and then using the coinduction principle.

The goal in the following is to show that \(\leq_{b,PFMI} \) is a precongruence. A relation \(\mu \) is operator-respecting, iff \(s_i \mu t_i \) for \(i = 1, \ldots, n \) implies \(\xi(s_1, \ldots, s_n) \mu \xi(t_1, \ldots, t_n) \). This proof proceeds by defining a congruence candidate \(\leq_{cand} \) as a closure of \(\leq_{b,PFMI} \) within contexts, which obviously is operator respecting: This relation is not known to be transitive. Then we show that \(\leq_{b,PFMI} \) and \(\leq_{cand} \) coincide.

Definition B.3. The precongruence candidate \(\leq_{cand} \) is a binary relation on open expressions and is defined as the greatest fixpoint of the operator \(F_{cand} \) on relations on all expressions:

1. \(x F_{cand}(\eta) s \) iff \(x \leq_{b,PFMI} s \).
2. \(\xi(s_1, \ldots, s_n) F_{cand}(\eta) s \) iff there is some expression \(\xi(s'_1, \ldots, s'_n) \leq_{b,PFMI} s \) with \(s_i \leq_{cand} s'_i \) for \(i = 1, \ldots, n \).

The operator \(F_{cand} \) is monotone, hence the definition makes sense. Presumably it is not continuous, hence usual induction over an \(\mathbb{N} \)-indexed intersection does not work and we have to stick to coinduction for the proofs:

Lemma B.4. If some relation \(\eta \) satisfies \(\eta \subseteq F_{cand}(\eta) \), then \(\eta \subseteq \leq_{cand} \).

Since \(\leq_{cand} \) is a fixpoint of \(F_{cand} \), we have:

Lemma B.5.

1. \(\leq_{cand} \) is reflexive.
2. \(\leq_{cand} \) and \((\leq_{cand})^c \) are operator-respecting.
3. \(\leq_{b,PFMI} \subseteq \leq_{cand} \) and \(\leq_{b,PFMI} \subseteq (\leq_{cand})^c \).
4. \(\leq_{cand} \circ \leq_{b,PFMI} \subseteq \leq_{cand} \).
5. \((s \leq_{cand} s' \wedge t \leq_{cand} t') \Rightarrow t[s/x] \leq_{cand} t'[s'/x] \).
6. \(s \leq_{cand} t \) implies that \(\sigma(s) \leq_{cand} \sigma(t) \) for every substitution \(\sigma \).
7. \(\leq_{cand} \subseteq ((\leq_{cand})^c)^o \)

Proof. 1. This follows from Lemma **B.5** since \(\leq_{b}^o \) is reflexive, using coinduction:

Show that \(\eta := \leq_{cand} \cup \{(s,s) \mid s \in IExpr_{PFMI}\} \) satisfies \(\eta \subseteq F_{cand}(\eta) \).
2. Let \(\eta \) be the operator-respecting closure of \(\leq_{\text{cand}} \). I.e., the least fixpoint of adding relations \(\xi(s_1,\ldots,s_n) \leq \xi(t_1,\ldots,t_n) \) if \(s_i \leq t_i \) for all \(i \), starting with \(\leq_{\text{cand}} \). We will show that \(\eta \subseteq F_{\text{cand}}(\eta) \). So assume that \(\xi(s_1,\ldots,s_n) \leq_{\text{cand}} \xi(t_1,\ldots,t_n) \) holds. If \(\xi(s_1,\ldots,s_n) \leq_{\text{cand}} \xi(t_1,\ldots,t_n) \), then \(\xi(s_1,\ldots,s_n) \leq_{\text{cand}} \xi(t_1,\ldots,t_n) \) holds, since \(\leq_{\text{cand}} \) is reflexive. Otherwise \(\xi(s_1,\ldots,s_n) \neq \xi(t_1,\ldots,t_n) \) since \(s_i \neq t_i \) for all \(i \). Then \(\xi(s_1,\ldots,s_n) \leq_{\text{cand}} \xi(t_1,\ldots,t_n) \) holds since \(\leq_{b,\text{PFMI}} \) is reflexive. By coinduction we obtain \(\eta \leq_{\text{cand}} \eta \). Since also \(\leq_{\text{cand}} \subseteq \eta \), we have \(\eta = \leq_{\text{cand}} \).

3. This follows from Lemma [B.5] since \(\leq_{\text{cand}} \) is reflexive.

4. This follows from the definition, Lemma [B.5] and transitivity of \(\leq_{b,\text{PFMI}} \).

5. Let \(\eta := \leq_{\text{cand}} \cup \{(r^1[s/x],r^2[s'/x]) \mid r \leq_{\text{cand}} r'\} \). We show that \(\eta \subseteq F_{\text{cand}}(\eta) \). In the case \(x \leq_{\text{cand}} r' \), we obtain \(x \leq_{b,\text{PFMI}} r' \) from the definition, and \(r' \leq_{b,\text{PFMI}} r'[s'/x] \) and thus \(x[s/x] \leq_{\text{cand}} r'[s'/x] \). In the case \(y \leq_{\text{cand}} r \), we obtain \(y \leq_{b,\text{PFMI}} r' \) from the definition, and \(y[s/x] = y \leq_{b,\text{PFMI}} r'[s'/x] \) and thus \(y = y[s/x] \leq_{\text{cand}} r'[s'/x] \). If \(r = \xi(r_1,\ldots,r_n) \) and \(r \leq_{\text{cand}} r' \), then there is some \(\xi(r'_1,\ldots,r'_n) \leq_{b,\text{PFMI}} r' \) with \(r_i \leq_{\text{cand}} r'_i \). W.l.o.g bound variables have fresh names. We have \(r_i[s/x] \leq_{\text{cand}} r'_i[s'/x] \) and \(\xi(r'_1,\ldots,r'_n)[s'/x] \leq_{b,\text{PFMI}} r'[s'/x] \).

Thus \(r[s/x] = \xi(r'_1,\ldots,r'_n)[s'/x] \). By coinduction we see that \(\leq_{\text{cand}} = \eta \).

6. This follows from item 6.

7. This follows from item 6 and Lemma 1.3.

Lemma B.7. The middle expression in the definition of \(\leq_{\text{cand}} \) can be chosen as closed, if \(s, t \) are closed: Let \(s = \xi(s_1,\ldots,s_{\text{ar}}(\xi)) \), such that \(s \leq_{\text{cand}} t \) holds.

Then there are operands \(s'_i \), such that \(\xi(s'_1,\ldots,s'_{\text{ar}}(\xi)) \) is closed, \(\forall \xi' : s_i \leq_{\text{cand}} s'_i \) and \(\xi(s'_1,\ldots,s'_{\text{ar}}(\xi)) \leq_{b,\text{PFMI}} s \).

Proof. The definition of \(\leq_{\text{cand}} \) implies that there is an expression \(\xi(s''_1,\ldots,s''_{\text{ar}}(\xi)) \) such that \(s_i \leq_{\text{cand}} s''_i \) for all \(i \) and \(\xi(s''_1,\ldots,s''_{\text{ar}}(\xi)) \leq_{b,\text{PFMI}} t \). Let \(\sigma \) be the substitution with \(\sigma(x) := v_x \) for all \(x \in \text{FV}(\xi(s''_1,\ldots,s''_{\text{ar}}(\xi))) \), where \(v_x \) is any closed expression. Note that for every type \(\tau \) there exists a closed expression, namely \(\text{Bot} : \tau \). Lemma 4.6 now shows that \(s_i = \sigma(s_i) \leq_{\text{cand}} \sigma(s''_i) \) holds for all \(i \). The relation \(\sigma(\xi(s''_1,\ldots,s''_{\text{ar}}(\xi))) \leq_{b,\text{PFMI}} t \) holds, since \(t \) is closed and due to the definition of an open extension. The requested expression is \(\xi(\sigma(s'_1),\ldots,\sigma(s'_{\text{ar}})) \).

Lemmas 4.5 and 4.6 imply that \(\leq_{\text{cand}} \) is right-stable w.r.t. reduction:

Lemma B.8. If \(s \leq_{\text{cand}} t \) and \(t \xrightarrow{\text{PFMI}} t' \), then \(s \leq_{\text{cand}} t' \).

We show that \(\leq_{\text{cand}} \) is left-stable w.r.t. reduction:

Lemma B.9. Let \(s, t \) be closed expressions such that \(s = \theta(s_1,\ldots,s_n) \) is a value and \(s \leq_{\text{cand}} t \). Then there is some closed value \(t' = \theta(t_1,\ldots,t_n) \) with \(t \xrightarrow{\text{PFMI}} t' \) and for all \(i : s_i \leq_{\text{cand}} t_i \).
Proof. The definition of \(\leq_{\text{cand}} \) implies that there is a closed expression \(\theta(t_1', \ldots, t_n') \) with \(s_i \leq_{\text{cand}} t_i' \) for all \(i \) and \(\theta(t_1', \ldots, t_n') =_{b, \text{PFMI}} t \). Consider the case \(s = \lambda x.s' \). Then there is some closed \(\lambda x.t' \leq_{b, \text{PFMI}} t \) with \(s' \leq_{\text{cand}} t' \). The relation \(\lambda x.t' \leq_{b, \text{PFMI}} t \) implies that \(t \xrightarrow{\text{PFMI}*} \lambda x.t'' \). Lemma 4.5 now implies \(\lambda x.s' \leq_{\text{cand}} \lambda x.t'' \). Definition of \(\leq_{\text{cand}} \) and Lemma B.7 now show that there is some closed \(\lambda x.t'(3) \) with \(s' \leq_{\text{cand}} t'(3) \) and \(\lambda x.t'(3) \leq_{b, \text{PFMI}} \lambda x.t'' \). The latter relation implies \(t'(3) \leq_{b, \text{PFMI}} t'' \), which shows \(s' \leq_{\text{cand}} t'' \) by Lemma B.6(4).

If \(t \) is a constructor, then there is a closed expression \(\theta(t_1', \ldots, t_n') \) with \(s_i \leq_{\text{cand}} t_i' \) for all \(i \) and \(\theta(t_1', \ldots, t_n') \leq_{b, \text{PFMI}} t \). The definition of \(\leq_{b, \text{PFMI}} \) implies that \(t \xrightarrow{\text{PFMI}*} \theta(t_1', \ldots, t_n') \) with \(t_i' \leq_{b, \text{PFMI}} t_i'' \) for all \(i \). By definition of \(\leq_{\text{cand}} \), we obtain \(s_i \leq_{\text{cand}} t_i'' \) for all \(i \).

Proposition B.10. Let \(s, t \) be closed expressions, \(s \leq_{\text{cand}} t \) and \(s \xrightarrow{\text{PFMI}} s' \) where \(s \) is the redex. Then \(s' \leq_{\text{cand}} t \).

Proof. The relation \(s \leq_{\text{cand}} t \) implies that \(s = \xi(s_1, \ldots, s_n) \) and that there is some closed \(t' = \xi(t_1', \ldots, t_n') \) with \(s_i \leq_{\text{cand}} t_i' \) for all \(i \) and \(t' \leq_{b, \text{PFMI}} t \).

- For the (beta)-reduction, \(s = s_1 s_2 \), where \(s_1 = (\lambda x.s'_1) \), \(s_2 \) is a closed term, and \(t' = t'_1 t'_2 \). Lemma B.9 and \(s_i \leq_{\text{cand}} t_i' \) show that \(t'_1 \xrightarrow{\text{PFMI}*} \lambda x.t'_1'' \) with \(\lambda x.s'_1 \leq_{\text{cand}} \lambda x.t'_1'' \) and also \(s'_1 \leq_{\text{cand}} t'_1'' \). From \(t'_1 \xrightarrow{\text{PFMI}*} t''_1[t'_2/x] \) we obtain \(t''_1[t'_2/x] \leq_{b, \text{PFMI}} t \). Lemma B.6 now shows \(s_1'[s_2/x] \leq_{\text{cand}} t''_1[t'_2/x] \). Hence \(s'_1[\leq_{\text{cand}} t' \leq_{\text{cand}} t] \), again using Lemma B.6.
- Similar arguments apply to the case-reduction.
- Suppose, the reduction is a \(\text{seq} \)-reduction. Then \(s \leq_{\text{cand}} t \) and \(s = (\text{seq} s_1 s_2) \). Lemma B.7 implies that there is some closed \((\text{seq} t'_1 t'_2) \leq_{b, \text{PFMI}} t \) with \(s_i \leq_{\text{cand}} t_i' \). Since \(s_1 \) is a value, Lemma B.9 shows that there is a reduction \(t'_1 \xrightarrow{\text{PFMI}*} t''_1 \), where \(t'_2 \leq_{b, \text{PFMI}} s_2 \) and \(\text{(seq) } t'_1 t'_2 \xrightarrow{\text{PFMI}*} (\text{seq) } t'_1 t'_2 \). Since \(t'_2 \leq_{b, \text{PFMI}} (\text{seq) } t'_1 t'_2 \leq_{b, \text{PFMI}} t \), and \(s_2 \leq_{\text{cand}} t'_2 \), we obtain \(s_2 \leq_{\text{cand}} t \). \(\square \)

Proposition B.11. Let \(s, t \) be closed expressions, \(s \leq_{\text{cand}} t \) and \(s \xrightarrow{\text{PFMI}} s' \). Then \(s' \leq_{\text{cand}} t \).

Proof. We use induction on the length of the path to the hole. The base case is proved in Proposition B.10. Let \(\Gamma, t \) be closed, \(\Gamma \leq_{\text{cand}} t \) and \(\Gamma \xrightarrow{\text{PFMI}} \Gamma' \), where we assume that the redex \(s \) is not at the top level and that \(\Gamma \) is an IECtxt-context. The relation \(\Gamma \leq_{\text{cand}} t \) implies that \(\Gamma = \xi(s_1, \ldots, s_n) \) and that there is some closed \(t' = \xi(t_1', \ldots, t_n') \leq_{b, \text{PFMI}} t \) with \(s_i \leq_{\text{cand}} t_i' \) for all \(i \). If \(s_j \xrightarrow{\text{PFMI}*} s'_j \), then by induction hypothesis, \(s_j' \leq_{\text{cand}} t_j' \). Since \(s_i = \xi(s_1, \ldots, s_j-1, s'_j, s_{j+1}, \ldots, s_n) \leq_{\text{cand}} \xi(t_1', \ldots, t_{j-1}', t_j', t_{j+1}', \ldots, t_n') \), and from \(\xi(t_1', \ldots, t_n') \leq_{b, \text{PFMI}} t \), also \(\Gamma[s'] = \xi(s_1, \ldots, s_j-1, s'_j, s_{j+1}, \ldots, s_n) \leq_{\text{cand}} t \).

Now we are ready to prove that the precongruence candidate and similarity coincide. First we prove this for the relations on closed expressions and then consider (possibly) open expressions.
Theorem B.12. $(\leq_{\text{cand}})^c = \leq_{b,PFMI}$.

Proof. Since $\leq_{b,PFMI} \subseteq (\leq_{\text{cand}})^c$ by Lemma B.6 we have to show that $(\leq_{\text{cand}})^c \subseteq \leq_{b,PFMI}$. Therefore it is sufficient to show that $(\leq_{\text{cand}})^c$ satisfies the fixpoint equation for $\leq_{b,PFMI}$. We show that $(\leq_{\text{cand}})^c \subseteq F_{PFMI}((\leq_{\text{cand}})^c)$. Let s $(\leq_{\text{cand}})^c$ t for closed terms s, t. We show that $s F_{PFMI}((\leq_{\text{cand}})^c) t$ if $\neg (s \leq_{b,PFMI} t)$, then $s F_{PFMI}((\leq_{\text{cand}})^c) t$ holds by Lemma B.6. If $s \upharpoonright_{PFMI} \theta(s_1, \ldots, s_n)$, then $\theta(s_1, \ldots, s_n) (\leq_{\text{cand}})^c \ t$ by Lemma B.9. Lemma B.9 shows that $t \xrightarrow{PFMI, s} \theta(t_1, \ldots, t_n)$ and for all $i : s_i \leq_{\text{cand}} t_i$. This implies $s F_{PFMI}((\leq_{\text{cand}})^c) t$, since $\theta(t_1, \ldots, t_n) \leq_{b,PFMI} t$. We have proved the fixpoint property of $(\leq_{\text{cand}})^c$ w.r.t. F_{PFMI}, and hence $(\leq_{\text{cand}})^c = \leq_{b,PFMI}$.

Theorem B.13. $\leq_{\text{cand}} = \leq_{b,PFMI}^o$.

Proof. Theorem B.12 shows $(\leq_{\text{cand}})^c \subseteq \leq_{b,PFMI}$ by monotonicity. Lemma B.6 (7) implies $\leq_{\text{cand}} \subseteq ((\leq_{\text{cand}})^c)^o \subseteq \leq_{b,PFMI}^o$.

This immediately implies:

Corollary B.14. $\leq_{b,PFMI}^o$ is a precongruence on infinite expressions IExpr_{PFMI}. If σ is a substitution, then $s \leq_{b,PFMI}^o \ t$ implies $\sigma(s) \leq_{b,PFMI} \sigma(t)$.

The same reasoning can also be performed for $\leq_{b,PFI}$:

Corollary B.15. $\leq_{b,PFI}^o$ is a precongruence on infinite expressions IExpr_{PFI}. If σ is a substitution, then $s \leq_{b,PFI}^o \ t$ implies $\sigma(s) \leq_{b,PFI} \sigma(t)$.

The last two corollaries show

Theorem B.16. $\leq_{b,PFMI}^o$ is a precongruence on infinite expressions IExpr_{PFMI}. If σ is a substitution, then $s \leq_{b,PFMI}^o \ t$ implies $\sigma(s) \leq_{b,PFMI}^o \sigma(t)$.

B.1 Recursive Replacements

Lemma B.17. Let x, y be a variables and t_1, t_2 be PFMI-expressions with $x \leq_{b,PFMI}^o \ t_2$ and $y \leq_{b,PFMI} \ t_1$. Then $x[y \backslash x] \leq_{b,PFMI}^o \ t_2[t_1 \backslash x]$.

Proof. The relation $y \leq_{b,PFMI} \ t_1$ implies $y \leq_{b,PFMI} \sigma(t_1)$ for all substitutions with $\sigma(y) = y$, hence $y \leq_{b,PFMI} \ t_1[t_2 \backslash x]$.

Lemma B.18. Let x be a variable and s_1, s_2, t_1, t_2 be PFMI-expressions with $s_i \leq_{b,PFMI} \ t_i$ for $i = 1, 2$. Then $s_2[s_1 \backslash x] \leq_{b,PFMI} \ t_2[t_1 \backslash x]$.

Proof. In the proof we use Theorem B.13 and also the knowledge about $\leq_{b,PFMI}^o$ and F_{cand}. If s_1 is the variable x, then the substitution $[s_1 \backslash x]$ is $x \mapsto \text{Bot}$, and the claim follows easily. Otherwise, we have $s_1 \neq x$. Let ρ be the relation defined by all pairs $s_2[s_1 \backslash x] \rho t_2[t_1 \backslash x]$ for all s_1, s_2, t_1, t_2 with $s_i \leq_{b,PFMI} \ t_i$ for $i = 1, 2$. In order to use coinduction, we show that $\rho \subseteq F_{\text{cand}}(\rho)$: Note that $\leq_{b,PFMI}^o \subseteq \rho$. Assume $s_2[s_1 \backslash x] \rho t_2[t_1 \backslash x]$.

An Equivalence for seq-Expressions

Proof. For any (also open) expressions \(e \subseteq \leq_{b,PFMI} t\) for infinite expressions \(s, t \in IExpr\), where it is sufficient to consider closed terms \(s, t\). If \(s \downarrow_{PF} w\), then clearly there exists a value \(v\) such that \(s \downarrow_{PF} w\). Thus we can construct the reduction sequence \(s \downarrow_{PF} w\). Now Proposition C.3 shows that \(s \downarrow_{PF} w\). This shows \(s \downarrow_{PF} w\). Theorem 5.4 shows that \(s \downarrow_{PF} w\).