
Correctness of an STM Haskell Implementation

Manfred Schmidt-Schauss and David Sabel

Goethe-University, Frankfurt, Germany

Technical Report Frank-50

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

October 23, 2012

Abstract. A concurrent implementation of software transactional mem-
ory in Concurrent Haskell using a call-by-need functional language with
processes and futures is given. The description of the small-step opera-
tional semantics is precise and explicit, and employs an early abort of
conflicting transactions. A proof of correctness of the implementation
is given for a contextual semantics with may- and should-convergence.
This implies that our implementation is a correct evaluator for an ab-
stract specification equipped with a big-step semantics.

1 Introduction

Due to the recent development in hardware and software, concurrent and paral-
lel programming is getting more and more important, and thus there is a need
for semantical investigations in concurrent programming. In this paper we in-
vestigate programming models of concurrent processes (threads) where several
processes may access shared memory. Concurrent access and independency of
processes lead to the well-known problems of conflicting memory use and thus
requires protection of critical sections to ensure mutual exclusion. Over the years
several programming primitives like locks, semaphores, monitors, etc. have been
introduced and used to assure this atomicity of memory operations in a con-
current setting. However, the explicit use of locking mechanisms is error-prone
– the programmer may omit to set or release a lock resulting in deadlocks or
race conditions – and it is also often inefficient, since setting too many locks may
sequentialize program execution and prohibit concurrent evaluation. Another ob-
stacle of lock-based concurrency is that composing larger programs from smaller
ones is usually impossible [5].

A recent approach to overcome these difficulties is software transactional
memory (STM) [13,14,5,6] where operations on the shared memory are viewed



2 M. Schmidt-Schauß and D. Sabel

as transactions on the memory, i.e. several small operations (like read and write
of memory locations) are compound to a transaction and then the system (the
transaction manager) ensures that the transaction is performed in an atomic,
isolated, and consistent manner. I.e. the programmer can assume that all the
transactions are performed sequentially and isolated, while the runtime system
may perform them concurrently and interleaved (invisible to the programmer).
This removes the burden from the programmer to set locks and to keep track of
them. Composability of transactions is another very helpful feature of STM. We
focus on the Haskell-based approach in [5,6], which provides even more advan-
tages like separation of different kinds of side effects (IO and STM) by monadic
programming and the type system of Haskell. Memory-transactions are indicated
in the program by marking a sequence of reductions as atomic.

Though STM is easy to use for the programmer, implementing a correct trans-
action manager is considerably harder. Hurdles are an exact specification of the
correctness properties, of course to provide an implementation, and to prove its
correctness and the validity of the properties. In this paper we will address and
solve these problems. We start with a language and calculus SHF (STM-Haskell
with futures) that is rather close to STM-Haskell [5,6] and shares some ideas
with the concurrent call-by-need process calculus investigated in [10,11]. In dif-
ference to STM-Haskell threads are modelled by futures, SHF has no exceptions,
it uses call-by-need evaluation and bindings in the environment for sharing, and
– for simplicity – it is equipped with a monomorphic type system. We keep the
monadic modelling for the separation of IO and STM and the composability, in
particular the selection composability by orElse. A big-step operational seman-
tics is given for SHF , which is obviously correct, since transactions are executed
in isolation, and their effect on the shared memory are only observable after
a successful execution. However, this semantics is not implementable, since for
instance it requires to solve the halting problem. Thus the purpose of defining
SHF is not the implementation but the specification of a correct STM-system.

Secondly, we define a concurrent implementation of SHF by introducing the
concurrent calculus CSHF . CSHF is close to a real implementation, since its
operational semantics is formulated as a detailed, precise and complete small-
step reduction semantics where all precautions and retries of the transactions
are explicitly represented, and with appropriate granularity of the small-step
reductions. Features of CSHF are registration of threads at TVars and forced
aborts of transactions in case of conflicts. All applicability conditions for the
reductions are decidable. CSHF is designed to enable concurrent (i.e. interleaved)
execution of threads as much as possible, i.e. there are only very short phases
where internal locking mechanisms are used to prevent race conditions.

The main goal of our investigation is to show that the concurrent implemen-
tation fulfills the specification. Here we use the strong criterion of contextual
equivalence w.r.t. may- as well as should-convergence in both calculi, where
may-convergence means that a process has the ability to evaluate to a success-
ful process, and should-convergence means that the ability to become successful
is never lost on every reduction path. Observing also should-convergence for



Correctness of an STM Haskell Implementation 3

contextual equivalence ensures that it is not permitted to transform a program
P that cannot reach an error-state (i.e. a state that is not may-convergent)
into a program that can reach an error-state. In Main Theorem 4.17 we ob-
tain the important result that the implementation mapping ψ is observation-
ally correct [12], i.e. for every context D and process P in SHF it holds: D[P ]
may-converges (or should-converges, resp.), if, and only if ψ(D)[ψ(P )] is may-
convergent (should-convergent) in CSHF . Observational correctness thus shows
that may- and should-convergence is preserved and reflected by the implemen-
tation ψ (i.e. ψ is convergence equivalent) and the tests used for contextual
equivalence are translated in a compositional way. A direct consequence is also
that ψ is adequate, i.e. the implementation preserves all contextual inequalities
and thus does not introduce new equalities (which would introduce confusion in
the implementation). Note that even the proof of convergence equivalence of ψ
is a strong result, since it implies that CSHF is a correct evaluator for SHF .

Our notion of correctness is very strong, since it implies the properties of the
concurrent program that are aimed at in other papers like atomicity, opacity,
asf. A surprising consequence is that early abortion of conflicting transaction
is necessary to make the implementation correct, where “early” means that a
committing transaction must abort other conflicting transactions. Comparing
our results with the implementation in [6], our work is a justification for the
correctness of most of the design decisions of their implementation.

2 The SHF-Calculus

The syntax of SHF and its processes Proc is in Fig. 1(a).
We assume a countable infinite set of variables (denoted by x, y, z, . . .) and a
countable infinite set of identifiers (denoted by u, u′) to identify threads. In a
parallel composition P1 |P2 the processes P1 and P2 run concurrently, and the
name restriction νx.P restricts the scope of x to process P . A concurrent thread
〈uox〉⇐ e has identifier u and evaluates the expression e binding the result to the
variable x (called the future x). A process has usually one distinguished thread,

the main thread, denoted by 〈uox〉 main⇐== e. Evaluation of the main thread is en-
forced, which does not hold for other threads. TVars x t e are the transactional
(mutable) variables with name x and content e. They can only be accessed inside
STM-transactions. Bindings x = e model globally shared expressions, where we
call x a binding variable. Futures and names of TVars are called component-
names. A variable x is an introduced variable if it is a binding variable or a
component-name. A process is well-formed, if all introduced variables and iden-
tifiers are pairwise distinct, and it has at most one main thread.

We assume a partitioned set of data constructors, where each family repre-
sents a type constructor T . The T -data constructors are ordered (denoted with
c1, . . . , c|T |). Each type constructor T and each data constructor c has an arity
ar(T ) ≥ 0 (ar(c) ≥ 0, resp.). The functional language has variables, abstractions
λx.e, and applications (e1 e2), constructor applications (c e1 . . . ear(c)), case-
expressions where for every type constructor T there is one caseT -construct.



4 M. Schmidt-Schauß and D. Sabel

P, Pi ∈ Proc ::= P1 |P2 | νx.P | 〈uox〉⇐ e | x = e | x t e
e, ei ∈ Expr ::= x | m | λx.e | (e1 e2) | c e1 . . . ear(c) | seq e1 e2
| letrec x1 = e1, . . . , xn = en in e
| caseT e of altT,1 . . . altT,|T | where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

m ∈ MExpr ::= returnIO e | e1 >>=IO e2 | future e | atomically e | returnSTM e
| e1 >>=STM e2 | retry | orElse e1 e2 | newTVar e | readTVar e | writeTVar e

τ, τi ∈ Typ ::= IO τ | STM τ | TVar τ | (T τ1 . . . τn) | τ1 → τ2
(a) Syntax of Processes, Expressions, Monadic Expressions and Types

Functional values: abstractions λx.e and constructor applications c e1 . . . en
Monadic values: all monadic expressions m ∈ MExpr
Values: functional values and monadic values
cx-values: (c x1 . . . xn) and monadic values where all arguments are variables

(b) Functional values, monadic values, cx-values, and values

D ∈ PC ::= [·] | D |P | P |D | νx.D
E ∈ EC ::= [·] | (E e) | (case E of alts) | (seq E e)

MIO ∈ MCIO ::= [·] | MIO >>=IO e

MSTM ∈ MCSTM ::= MIO[atomically M̂STM]

where M̂STM ∈ M̂CSTM ::= [·] | M̂STM >>=STM e | orElse M̂STM e
F ∈ FC ::= E | (readTVar E) | (writeTVar E e)
LQ ∈ LCQ ::= 〈uox〉⇐MQ[F] where Q ∈ {IO, STM}
| 〈uox〉⇐MQ[F[xn]]|xn = En[xn−1]|. . .|x2 = E2[x1]|x1 = E1 where E1 6= [·]

(c) Process-, Monadic-, Evaluation-, and Forcing-Contexts

(P1 |P2) |P3 ≡ P1 | (P2 |P3) P1 |P2 ≡ P2 |P1 νx1.νx2.P ≡ νx2.νx1.P
(νx.P1) |P2 ≡ νx.(P1 |P2) if x 6∈ FV (P2) P1 ≡ P2 if P1 =α P2

(d) Structural Congruence

Fig. 1. The calculus SHF , syntax and contexts

We may abbreviate case-alternatives with Alts. For caseT there is exactly one
alternative (cT,i x1 . . . xar(cT,i) → ei) for every constructor cT,i of type construc-
tor T . In a pattern cT,i x1 . . . xar(cT,i) the variables xi must be pairwise distinct.
In the alternative (cT,i x1 . . . xar(cT,i) → ei) the variables xi become bound with
scope ei. Further constructs are seq-expressions (seq e1 e2) for strict evaluation,
and letrec-expressions to implement local sharing and recursive bindings. In
letrec x1 = e1, . . . , xn = en in e the variables xi must be pairwise distinct and
the bindings xi = ei are recursive, i.e. the scope of xi is e1, . . . , en and e.

Monadic expressions comprise variants for the IO- and the STM-monad of
the “bind” operator >>= for sequential composition of actions, and the return-
operator. For the STM-monad newTVar, readTVar, and writeTVar are available
to create and access TVars, the primitive retry to abort and restart the STM-
transaction, and orElse e1 e2 to compose an STM-transaction from e1, e2: orElse
returns if e1 is successful and if it catches a retry in e1 then it proceeds with e2.
For the IO-monad the future-operator creates threads, and atomically lifts an
STM-transaction into the IO-monad by executing the transaction.



Correctness of an STM Haskell Implementation 5

Variable binders are introduced by abstractions, letrec, case-alternatives,
and νx.P . This induces a notion of free and bound variables and α-renaming and
α-equivalence (denoted by =α). Let FV (P ) (FV (e), resp) be the free variables
of process P (expression e, resp.). We assume the distinct variable convention to
hold, and also assume α-renaming is implicitly performed, if necessary.

A context is a process or an expression with a hole (denoted by [·]). We write
C[e] (C[P ], resp.) for filling the hole of context C by expression e (process P ,
resp.). For processes we use a structural congruence ≡ to equate obviously equal
processes, which is the least congruence satisfying the equations of Fig. 1(d).

SHF is equipped with a monomorphic type system. However, we “overload”
the constructors and the monadic operators by assuming that they have poly-
morphic type according to the usual conventions, however in the language they
are used as monomorphic. The polymorphic types of the monadic operators are:

future :: (IO α)→ IO α returnIO :: α→ IO α
atomically :: (STM α)→ IO α ( >>=IO ) :: (IO α1)→ (α1 → IO α2)→ IO α2

returnSTM :: α→ STM α ( >>=STM ) :: (STM α1)→ (α1 → STM α2)→ STM α2

readTVar :: (TVar α)→ STM α writeTVar :: (TVar α)→ α→ STM ()
newTVar :: α→ STM(TVar α) orElse :: (STM α)→ (STM α)→ (STM α)
retry :: (STM α)

The syntax of monomorphic types Typ is given in Fig. 1(a), where (IO τ)
means a monadic IO-action with return type τ , (STM τ) means an STM-
transaction action, (TVar τ) stands for a TVar-reference with content type τ ,
(T τ1 . . . τn) is a type for an n-ary type constructor T , and τ1 → τ2 is a func-
tion type. To fix the types during reduction and for transformations, we assume
that every variable x is explicitly typed and thus has a built-in type Γ (x). For
contexts, we assume that the hole [·] is typed and carries a type label. The no-
tation Γ ` e :: τ (Γ ` P :: wt, resp.) means that expression e (process P , resp.)
can be typed with type τ (can be typed, resp.) using Γ . We omit the full set
of typing rules (see Appendix A), but note that 〈uox〉⇐ e is well-typed if x is
of type τ and e is of type IO τ , and that an STM- or an IO-type for the first
argument of seq is forbidden, to enable that the monad laws hold (see [11]).

Definition 2.1. A process P is well-typed iff P is well-formed and Γ ` P :: wt
holds. An expression e is well-typed with type τ iff Γ ` e :: τ holds.

We define a small-step reduction relation
SHF−−−→ (called standard reduction) for

SHF with two intermediate big-step style reductions for the atomic execution of
an STM-transaction (i.e. the evaluation of e in atomically e and of orElse e e′).

The intermediate reduction of transactions is called
SHFA−−−−→.

Definition 2.2. A well-formed process P is successful, if P has a main thread

of the form 〈uox〉 main⇐== return e, i.e. P ≡ νx1. . . . νxn.(〈uox〉
main⇐== return e |P ′).

Definition 2.3. The standard reduction rules are given in Fig. 2 where the
used contexts are defined in Fig. 1(c). Standard reductions are permitted only
for well-formed and non-successful processes.



6 M. Schmidt-Schauß and D. Sabel

Monadic STM Computations:

(lunitSTM)〈uoy〉⇐MSTM[returnSTM e1 >>=STM e2]
SHFA−−−−→ 〈uoy〉⇐MSTM[e2 e1]

(read) 〈uoy〉⇐MSTM[readTVar x] |x t e
SHFA−−−−→ νz.(〈uoy〉⇐MSTM[returnSTM z] | z = e |x t z)

(write) 〈uoy〉⇐MSTM[writeTVar x e2] |x t e1
SHFA−−−−→ 〈uoy〉⇐MSTM[returnSTM ()] |x t e2

(nvar) 〈uoy〉⇐MSTM[newTVar e]
SHFA−−−−→ νx.(〈uoy〉⇐MSTM[returnSTM x] |x t e)

(ortry)

νX.D[〈uoy〉⇐MSTM[orElse e1 e2]]
SHFA,∗−−−−−→ νX.D′[〈uoy〉⇐MSTM[orElse retry e2]]

νX.D[〈uoy〉⇐MSTM[orElse e1 e2]]
SHFA−−−−→ νX.D[〈uoy〉⇐MSTM[e2]]

(orret) 〈uoy〉⇐MSTM[orElse (returnSTMe1) e2]
SHFA−−−−→ 〈uoy〉⇐MSTM[e1]

(retryup)〈uoy〉⇐MSTM[retry >>=STM e1]
SHFA−−−−→ 〈uoy〉⇐MSTM[retry]

Monadic IO Computations:

(lunitIO) 〈uoy〉⇐MIO[returnIO e1 >>=IO e2]
SHF−−−→ 〈uoy〉⇐MIO[e2 e1]

(fork) 〈uoy〉⇐MIO[future e]
SHF−−−→ νz, u′.(〈uoy〉⇐MIO[return z] | 〈u′oz〉⇐ e)

where z, u′ are fresh and the created thread is not the main thread

(unIO) 〈uoy〉⇐ return e
SHF−−−→ y = e if the thread is not the main-thread

(atomic)

νX.D1[〈uoy〉⇐MIO[atomically e]]
SHFA,∗−−−−−→ νX.D′1[〈uoy〉⇐MIO[atomically (returnSTM e

′)]]

D[〈uoy〉⇐MIO[atomically e]]
SHF−−−→ D′[〈uoy〉⇐MIO[returnIO e

′]]
where D = νX.(D1 |D2) and D1 contains all bindings and TVars of D,
D2 contains all futures of D and where D′ = νX.(D′1 |D2)

Functional Evaluation:

(fevalIO) P
SHF−−−→ P ′, if P

a−→ P ′ for a ∈ {cpIO, absIO,mkbIO, lbetaIO, caseIO, seqIO}
(fevalSTM)P

SHFA−−−−→ P ′, if P
a−→ P for a ∈ {cpSTM, absSTM,mkbSTM, lbetaSTM, caseSTM, seqSTM}

The reductions with parameter Q ∈ {STM, IO} are defined as follows:
(cpQ) LQ[x1] |x1 = x2 | . . . |xn−1 = xn |xn = v

→ LQ[v] |x1 = x2 | . . . |xn−1 = xn |xn = v,
if v is an abstraction, a cx-value or a component-name

(absQ) LQ[x1] |x1 = x2 | . . . |xm−1 = xm |xm = c e1 . . . en
→ νy1, . . . yn.(LQ[c y1 . . . yn] |x1 = x2 | . . . |xm−1 = xm

|xm = c y1 . . . yn | y1 = e1 | . . . | yn = en)
if c is a constructor, or returnSTM, returnIO, >>=STM , >>=IO , orElse,
atomically, readTVar, writeTVar, newTVar, or future and n ≥ 1,
and some ei is not a variable.

(mkbQ) LQ[letrec x1 = e1, . . . , xn = en in e]
→ νx1, . . . , xn.(LQ[e] |x1 = e1 | . . . |xn = en)

(lbetaQ) LQ[((λx.e1) e2)]→ νx.(LQ[e1] |x = e2)

(caseQ) LQ[caseT (c e1 . . . en) of . . . ((c y1 . . . yn)→ e) . . .]
→ νy1, . . . , yn.(LQ[e] | y1 = e1 | . . . | yn = en]), if n > 0

(caseQ) LQ[caseT c of . . . (c→ e) . . .]→ LQ[e]

(seqQ) LQ[(seq v e)]→ LQ[e], if v is a functional value

Closure: Pi ≡ D[P ′i ], P
′
1

SHF−−−→ P ′2

P1
SHF−−−→ P2

Pi ≡ D[P ′i ], P
′
1

SHFA−−−−→ P ′2

P1
SHFA−−−−→ P2

Fig. 2. The calculus SHF , reductions



Correctness of an STM Haskell Implementation 7

In the following we will denote the transitive closure of a relation
R−→ by

R,+−−→
and the reflexive-transitive closure by

R,∗−−→.

We define the
SHF−−−→-redex: For (lunit), (fork), it is the expression in the con-

text M, for (unIO), it is 〈uoy〉⇐ return e, for (mkb), (lbeta), (case), (seq), (cp),

(abs) it is the expression (or variable) in the context L. We define the
SHFA−−−−→-

redex: For (lunitSTM), (read), (write), (nvar), (ortry), (orret) it is the expression
in the context MSTM, for (mkbSTM), (lbetaSTM), (caseSTM), (seqSTM), (cpSTM), (absSTM)
it is the expression (or variable) in the context LSTM.

We explain the standard reduction rules of Fig. 2. The rule (lunit) implements
the semantics of the monadic sequencing operator >>= . The rules (read), (write),
and (nvar) access and create TVars. The rule (ortry) is a big-step rule: if a
SHFA,∗−−−−−→-reduction sequence starting with orElse e1 e2 ends in orElse retry e2,
then the effects are ignored, and orElse e1 e2 is replaced by e2. If the reduction
of e1 ends with return e, then rule (orret) is used to keep the result as the result
of orElse e1 e2. The rule (atomic) is also a big-step rule. If for a single thread

the
SHFA,∗−−−−−→-reduction successfully produces a return, then the transaction is

performed in one step of the
SHF−−−→-reduction. If the

SHFA,∗−−−−−→-reduction ends in

a retry, in a stuck expressions or does not terminate, then there is no
SHF−−−→-

reduction, and hence it is omitted from the operational semantics. The rule
(fork) spawns a new concurrent thread and returns the newly created future
as the result. The rule (unIO) binds the result of a monadic computation to a
functional binding, i.e. the value of a concurrent future becomes accessible.

The rules (cp) and (abs) inline a needed binding x = e where e must be
an abstraction, a cx-value, or a component name. To implement call-by-need
evaluation the arguments of constructor applications and monadic expressions
are shared by new bindings, similar to lazy copying [15]. Since the variable
(binding-) chains are transparent, there is no need to copy binding-variables
to other places in the expressions. The rule (mkb) moves letrec-bindings into
the global bindings. The rule (lbeta) is the sharing variant of β-reduction. The
(case)-reduction reduces a case-expression, where perhaps bindings are created
to implement sharing. The (seq)-rule evaluates a seq-expression.

Since the reduction rules only introduce variables which are fresh and never

introduce a main thread,
SHF−−−→ preserves well-formedness. Also type preservation

holds, since every redex keeps the type of subexpressions.
Contextual equivalence equates processes P1, P2 if their observable behavior

is indistinguishable if P1 and P2 are plugged into any process context. For non-
deterministic (and concurrent) calculi observing may-convergence, i.e. whether
a process can be reduced to a successful process, is not sufficient and thus we
will observe may-convergence and should-convergence (see [8,9]).

Definition 2.4. A process P may-converges (written as P↓), iff it is
well-formed and reduces to a successful process, (see Definition 2.2), i.e.

P↓ iff P is well-formed and ∃P ′ : P
SHF ,∗−−−−→ P ′ ∧ P ′ successful. If P↓ does not

hold, then P must-diverges written as P⇑. A process P should-converges (writ-



8 M. Schmidt-Schauß and D. Sabel

ten as P⇓), iff it is well-formed and remains may-convergent under reduction,

i.e. P⇓ iff P is well-formed and ∀P ′ : P
SHF ,∗−−−−→ P ′ =⇒ P ′↓. If P is not should-

convergent then we say P may-diverges written as P↑, which is also equivalent

to ∃P ′ : P
SHF ,∗−−−−→ P ′ ∧ P ′⇑.

Contextual approximation ≤c and contextual equivalence ∼c on processes
are defined as ≤c := ≤↓ ∩ ≤⇓ and ∼c := ≤c ∩ ≥c where for ζ ∈ {↓,⇓}: P1 ≤ζ
P2 iff ∀D ∈ PC : D[P1]ζ =⇒ D[P2]ζ.

The definition of
SHF−−−→ implies that non-wellformed processes are always

must-divergent. Also, the process construction by D[P ] is always well-typed if P
is well-typed, since we assume that variables have a built-in type.

3 A Concurrent Implementation of STM Evaluation

While SHF obviously implements STM in a correct manner, since transactions
are performed isolated and atomically, there are two drawbacks for implementing
this semantics: There is few concurrency, and the rules (atomic) and (ortry)
have undecidable preconditions, since they include the halting problem. That
is why we introduce a concurrent (small-step) evaluation enabling much more
concurrency which is closer to an abstract machine than the big-step semantics.
The executability of every single step is decidable, and every state has a finite
set of potential successors. The undecidable conditions in the rules (atomic) and
(ortry) are checked by tentatively executing the transaction, under concurrency,
thus allowing other threads to execute. Transaction execution should guarantee
an equivalent linearized execution of transactions. Instead of locking methods, we
look for lock-free transaction handling. Instead of using an optimistic read/write
approach which performs a rollback in case of a conflict [4], we will follow a
pessimistic read and write: there are no locks at the start of a transaction,
reads and writes are local, only at the end of a successful transaction there is
a commit phase and updates become visible to other transactions where a real,
but internal, locking is used for a short time. To have a correct overall execution,
conflicting transactions will be stopped by sending them a retry-notification (so-
called early conflict detection), where the knowledge of the potential conflicts is
memorized at the TVars.

We describe our variant of concurrent execution of software transactional
memory including lock-free transactions, where our ultimate goal is to show that
our concurrent variant is correct, i.e. to show that it is semantically equivalent to
the big-step reduction defined for SHF . The main idea is to view a transaction
as a function V1 → V2 – from a set of input TVars V1 to a set of modified TVars
V2 where V1, V2 may have common elements. The guarantee must be that at the
end of transaction execution, the complete transaction could be atomically and
instantaneously executed on the TVars V1, V2. At the end of the transaction,
the set of read TVars and the set of updated TVars must be memorized at the
executing thread, and other transactions that have read any variable of V2, but
are not finished yet, need to be aborted (restarted) due to a conflict. Sharing by



Correctness of an STM Haskell Implementation 9

bindings is carefully maximized, including transparent variable-variable-binding
chains, which leads to manageable correctness proofs.

Now we detail on this idea and introduce the calculus CSHF which has a
concurrent evaluation of transactions and slightly adapts the syntax of SHF .
First we describe the syntax changes of the language, and then exactly describe
the rules, which are close to a concurrent abstract machine for SHF.

Definition 3.1. The syntax of CSHF -processes is almost the same as for SHF -
processes where, however, there are some extensions and changes.

Instead of TVars x t e there are two constructs: The global TVars are
x tg e u g, where the additional third argument u is a locking label and may be
empty (written as ∅) or a thread identifier u that locks the TVar, and g is a list
of thread identifiers for those threads that want to be notified for a retry, when x
is updated. A stack of thread-local TVars: u tls s, where u is a thread identifier
and s is a stack of sets with elements x tl e, where x is a name of a TVar, and
e is an expression.

A thread may have a transaction log, which is only available if a thread is

within a transaction. It is written over the thread-arrow as 〈uoy〉 T,L;K⇐==== e where
T is a set of TVars (i.e. the names of the TVars) that are read during the
transaction; L is a stack of triples (La, Ln, Lw) where La is a set of the names
of all TVars which are accessed during the transaction, Ln a set of names of
newly generated TVars, Lw a set of locally updated (or written) TVars, and the
stack reflects the depth of the orElse-execution; K is a set of TVar-names that
is locked by a thread in the commit-phase.

Additional variants of the operators orElse and atomically are required:
orElse! indicates that orElse is active, and atomically! that a transaction is
active. atomically! has as a second argument an expression that is a saved
copy of the start expression and that will again be activated after rollback and
restart. I.e., the sets of monadic expressions and MCSTM-contexts are adapted
as:
m ∈MExpr ::= returnIO e | e1 >>=IO e2 | future e | returnSTM e | e1 >>=STM e2
| atomically e | atomically! e e′ | retry | orElse e1 e2 | orElse! e1 e2
| newTVar e | readTVar e | writeTVar e

MSTM ∈MCSTM ::= MIO[atomically! M̂STM e]

where M̂STM ∈ M̂CSTM ::= [·] | M̂STM >>=STM e | orElse! M̂STM e

A thread that corresponds to the syntax of SHF -processes is called non-
transactional, and a thread that uses one of the syntax components orElse!,
atomically!, or a transaction log is called transactional. A CSHF -process that
only has non-transactional threads and no u tls s-components is called non-
transactional; otherwise, it is called transactional.

We say a thread is currently performing a transaction, if the current evalua-

tion focusses on the arguments of atomically! (see the reduction
CSHF−−−−→ below).

Definition 3.2. A CSHF -process P is well-formed iff the following holds:
Variable names of TVars, threads, and binders are introduced at most once;



10 M. Schmidt-Schauß and D. Sabel

i.e. threads, bindings, and global TVars are unique per variable. For every com-
ponent x tl e in a stack-entry of u tls s, either there is also a global TVar x tg e o g,
or the TVar is in the Ln-component of the thread-memory (the locally generated
TVars). Moreover, for every thread identifier u, there is at most one process
component u tls s. In every stack entry, names of TVars occur at most once. For
every thread identifier u in u tls s there exists a thread with this identifier.

Though the syntax of CSHF is slightly different from SHF , we use the same
names for the context classes PC,EC, MCSTM,MC, FC,MCIO, and LCQ. If neces-
sary, then we distinguish the context classes using an index C (for concurrent).
For the PC-contexts we assume that also transactional threads are permitted.

Definition 3.3 (Operational Semantics of CSHF). A well-formed CSHF -

process P reduces to another CSHF -process P ′ (denoted by P
CSHF−−−−→ P ′) iff

P ≡ D[P1] and P ′ ≡ D[P ′1] and P1 → P ′1 by a reduction rule in Fig. 3, 4, and 5.

We explain the execution of a transaction and the use of the transaction
log, where we also point to the rules of the operational semantics. When the
execution is started a new empty transaction log is created (atomic).
Read-Operation: A read first looks into the local store. If no local TVar exists,
then the global value is copied into the local store and the own thread identifier
is added to the notify-list of the global TVar ((readl) and (readg)).
Write-Operation: A write command always writes into the local store, perhaps
preceded by a copy from the global into the local store ((writel) and (writeg)).
OrElse-Evaluation: If evaluation descends into the left expression of orElse,
then the stacks of TVar-names and of local TVars are extended by duplicating
their top element (orElse). For the final write in the commit phase only the
top of the stack is relevant. If evaluation of the left expression is successful, the
stack remains as it is (orReturn). In case of a retry, the top element is popped
(orRetry) and the execution of the second expression then uses the stack before
executing the orElse. Note that the information on the read TVars is kept in
the set T , since the values may have an influence on the outcome of the orElse-
tree execution. This is necessary, since the big-step semantics of SHF enforces a
left-to-right evaluation of the orElse-tree, where the leftmost successful try will
be kept. Note that this is semantically different from making a non-deterministic
choice of one of the successful possibilities in the orElse-tree.
Commit-Phase: At the end of a transaction, there is a lock-protected sequence
of updates: A thread that is in its commit-phase, first locks all its globally read
and to-be-updated TVars (writeStart). Locked variables cannot be accessed by
other threads for reading, or modifying the notify-list. Then all own notification-
entries are removed (writeClear). All the threads, which are unequal to the run-
ning thread, and that are in the notify-list of the updated TVars, will be stopped
by replacing the current transaction expression by retry (sendRetry). This
mechanism is like raising (synchronous) exceptions to influence other threads.
The to-be-updated TVars are written into the global store (writeTV), then the
locks are released (unlockTV) and fresh TVars are also moved to the global store
(writeTVn). Finally, the transaction log is removed (writeEnd).



Correctness of an STM Haskell Implementation 11

Monadic IO Computations:

(lunitIO) 〈uoy〉⇐MIO[returnIO e1 >>=IO e2]
CSHF−−−−→ 〈uoy〉⇐MIO[e2 e1]

(fork) 〈uoy〉⇐MIO[future e]
CSHF−−−−→ νz, u′.(〈uoy〉⇐MIO[return z] | 〈u′oz〉⇐ e)

where z, u′ are fresh and the created thread is not the main thread

(unIO) 〈uoy〉⇐ return e
SHF−−−→ y = e if the thread is not the main-thread

Monadic STM Computations:
(atomic) 〈uoy〉⇐MIO[atomically e]

CSHF−−−−→ νz.〈uoy〉 ∅,[∅]⇐=== MIO[atomically! z z] |u tls [∅] | z = e

(lunitSTM) 〈uoy〉
T,L⇐== MSTM[returnSTM e1 >>=STM e2]

CSHF−−−−→ 〈uoy〉 T,L⇐== MSTM[e2 e1]

(readl) 〈uoy〉 T,L⇐== MSTM[readTVar x] |u tls ({x tl e1}
·
∪ r) : s

CSHF−−−−→ νz.(〈uoy〉 T,L⇐== MSTM[returnSTM z] | z = e1 |u tls ({x tl z}
·
∪ r) : s

(readg) 〈uoy〉 T,L⇐== MSTM[readTVar x] |x tg e1 ∅ g |u tls r : s
CSHF−−−−→

νz.(〈uoy〉 T ′,L′
⇐==== MSTM[returnSTM z] | z = e1 |u tls ({x tl z}

·
∪ r) : s |x tg z ∅ g′)

if x 6∈ La where L = (La, Ln, Lw) : Lr, L
′ = (La ∪ {x}, Ln, Lw) : Lr,

T ′ = T ∪ {x} and g′ = ({u} ∪ g)

(writel) 〈uoy〉 T,L⇐== MSTM[writeTVar x e1] |u tls ({x tl e2}
·
∪ r : s)

CSHF−−−−→ 〈uoy〉 T,L′
⇐=== MSTM[returnSTM ()] |u tls ({x tl e1}

·
∪ r : s)

where L = (La, Ln, Lw) : Lr, L
′ = (La, Ln, Lw ∪ {x}) : Lr

(writeg) 〈uoy〉 T,L⇐== MSTM[writeTVar x e1] |x tg e2 ∅ g |u tls (r : s)
CSHF−−−−→ 〈uoy〉 T,L′

⇐=== MSTM[returnSTM ()] |x tg e2 ∅ g |u tls ({x tl e1}
·
∪ r : s)

if x 6∈ La, where L = (La, Ln, Lw) : Lr, L
′ = (La ∪ {x}, Ln, Lw ∪ {x}) : Lr

(nvar) 〈uoy〉 T,L⇐== MSTM[newTVar e] |u tls (r : s)
CSHF−−−−→ νx.(〈uoy〉 T,L′

⇐=== MSTM[returnSTM x] |u tls ({x tl e)}
·
∪ r : s)

where L = (La, Ln, Lw) and L′ = ({x} ∪ La, {x} ∪ Ln, Lw)

(retryup) 〈uoy〉 T,L⇐== MSTM[retry >>=STM e1]
CSHF−−−−→ 〈uoy〉 T,L⇐== MSTM[retry]

(orElse) 〈uoy〉 T,L⇐== MSTM[orElse e1 e2] | (u tls ({x1 tl e1,1, . . . , xn tl e1,n} : s)
CSHF−−−−→ νz1, . . . zn.(〈uoy〉

T,L′
⇐=== MSTM[orElse! e1 e2]

|u tls (({x1 tl z1, . . . , xn tl zn} : ({x1 tl z1, . . . , xn tl zn}) : s)
| z1 = e1,1 | . . . | zn = e1,n)

where L = (La, Ln, Lw) : Lr, L
′ = (La, Ln, Lw) : ((La, Ln, Lw) : Lr)

(orRetry)〈uoy〉 T,L⇐== MSTM[orElse! retry e2] |u tls (r : s)
CSHF−−−−→ 〈uoy〉 T,L′

⇐=== MSTM[e2] |u tls s where L = Le : L′

(orReturn) 〈uoy〉 T,L⇐== MSTM[orElse! (return e1) e2] |u tls (r : s)
CSHF−−−−→ 〈uoy〉 T,L⇐== MSTM[e1] |u tls (r : s)

(retryCGlob) 〈uoy〉 T,L⇐== MIO[atomically! retry e] |x tg e1 ∅ g
CSHF−−−−→ 〈uoy〉 T ′,L⇐=== MIO[atomically! retry e] |x tg e1 ∅ g′
if x ∈ T 6= ∅, where T ′ = T \ {x}, g′ = g \ {u}

(retryEnd) 〈uoy〉 ∅,L⇐== MIO[atomically! retry e] |u tls (r : s)
CSHF−−−−→ 〈uoy〉⇐MIO[atomically e]

Fig. 3. Concurrent Implementation of SHF , transaction reductions



12 M. Schmidt-Schauß and D. Sabel

The commit-phase uses thread-local memory K, written over the thread-arrow
after a semicolon. The third memory-component is the set of locked TVars.

(writeStart) start of commit: locking the read and to-be-written TVars

〈uoy〉 T,L⇐== MIO[atomically! (returnSTM e1) e] |x1 tg e
′
1 ∅ g1 | . . . |xn tg e′n ∅ gn

CSHF−−−−→ 〈uoy〉 T,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x1 tg e
′
1 u g1 | . . . |xn tg e

′
n u gn

where K := {x1, . . . , xn} = T ∪ (La \ Ln) and L = (La, Ln, Lw) : Lr

(writeClear) removing the notify-entries of u:

〈uoy〉 T,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e2 u g
CSHF−−−−→ 〈uoy〉 T ′,L;K⇐==== MIO[atomically! (returnSTM e1) e] |x tg e2 u g

′

if x ∈ T where g′ = g \ {u} and T ′ = T \ {x}

(sendRetry) Sending other threads (that are in transactions) a retry:

〈uoy〉 ∅,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e2 u g

| 〈u′oz〉 T ′,L′
⇐==== M′IO[atomically! e3 e4]

CSHF−−−−→ 〈uoy〉 ∅,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e2 u g
′

| 〈u′oz〉 T ′,L′
⇐==== M′IO[atomically! retry e4]

if x ∈ Lw, g 6= ∅, u′ ∈ g, where L = (La, Ln, Lw) : Lr, and g = g′
·
∪ {u′}

(writeTV) Overwriting the global TVars with the local TVars of u:

〈uoy〉 ∅,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e2 u ∅ |u tls ({x tl e3}
·
∪ r : s)

CSHF−−−−→ 〈uoy〉 ∅,L
′;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e3 u ∅ |u tls (r : s)

if for all z ∈ Lw \ Ln the g is empty in the component z tg e2 u g, and if Lw \ Ln 6= ∅
where L = (La, Ln, Lw) : Lr, x ∈ Lw \ Ln, L′ = (La, Ln, Lw \ {x}) : Lr.

(unlockTV) Unlocking the locked TVars:

〈uoy〉 ∅,L;K⇐=== MIO[atomically! (returnSTM e1) e] |x tg e2 u ∅
CSHF−−−−→ 〈uoy〉 ∅,L;K′

⇐=== MIO[atomically! (returnSTM e1) e] |x tg e3 ∅ ∅
if Lw \ Ln = ∅, and K 6= ∅ where L = (La, Ln, Lw) : Lr, and K′ = K \ {x}

(writeTVn) Moving the freshly generated TVars of u into global store:

〈uoy〉 ∅,L;∅⇐== MIO[atomically! (returnSTM e1) e] |u tls ({x tl e3}
·
∪ r : s)

CSHF−−−−→ 〈uoy〉 ∅,L;∅⇐== MIO[atomically! (returnSTM e1) e] |x tg e3 ∅ ∅
if Ln 6= ∅, x ∈ Ln, where L = (La, Ln, Lw) : Lr and L′ = (La, Ln \ {x}, ∅) : Lr

(writeEnd) Removing local store and end of commit of transaction:

〈uoy〉 ∅,L;∅⇐=== MIO[atomically! (returnSTM e1) e] |u tls (r : s)
CSHF−−−−→ 〈uoy〉⇐MIO[returnIO e1]
if no other rules of the commit-phase for u are applicable, i.e.,
if Ln = Lw = ∅, where L = (La, Ln, Lw) : Lr.

Fig. 4. Concurrent Implementation of SHF , commit phase of transaction



Correctness of an STM Haskell Implementation 13

Functional Evaluation

(fevalIO) P
CSHF−−−−→ P ′, if P

a−→ P ′ for a ∈ {cpIO, absIO,mkbIO, lbetaIO, caseIO, seqIO}
(fevalSTM)P

CSHF−−−−→ P ′, if P
a−→ P ′ for a ∈ {cpSTM, absSTM,mkbSTM, lbetaSTM, caseSTM, seqSTM}

The reductions with parameter Q ∈ {STM, IO} are defined as follows
(cpQ) LQ[x1] |x1 = x2 | . . . |xn−1 = xn |xn = v

→ LQ[v] |x1 = x2 | . . . |xn−1 = xn |xn = v,
if v is an abstraction, a cx-value, or a component name

(absQ) LQ[x1] |x1 = x2 | . . . |xm−1 = xm |xm = c e1 . . . en
→ νy1, . . . yn.(LQ[c y1 . . . yn] |x1 = x2 | . . . |xm−1 = xm

|xm = c y1 . . . yn | y1 = e1 | . . . | yn = en)
if c is a constructor, or returnSTM, returnIO, >>=STM , >>=IO , orElse,
atomically, readTVar, writeTVar, newTVar, or future,
and n ≥ 1, and some ei is not a variable.

(mkbQ) LQ[letrec x1 = e1, . . . , xn = en in e]
→ νx1, . . . , xn.(LQ[e] |x1 = e1 | . . . |xn = en)

(lbetaQ) LQ[((λx.e1) e2)]→ νx.(LQ[e1] |x = e2)
(caseQ) LQ[caseT (c e1 . . . en) of . . . ((c y1 . . . yn)→ e) . . .]

→ νy1, . . . , yn.(LQ[e] | y1 = e1 | . . . | yn = en]), if n > 0
(caseQ) LQ[caseT c of . . . (c→ e) . . .]→ LQ[e]
(seqQ) LQ[(seq v e)]→ LQ[e], if v is a functional value

Fig. 5. Concurrent implementation of SHF , functional reductions

Rollback and Restart: A transaction is rolled back and restarted by the retry-
command (if it is not inside an orElse-command). This can occur by a user pro-
grammed retry, or if the transaction gets stopped by a conflicting transaction
which is committing. The thread removes the notification entries (retryCGlob)
and then the transaction code is replaced by the original expression (retryEnd).

4 Correctness of the Concurrent Implementation

In this section we show that CSHF can be used as a correct evaluator for SHF
and its semantics. Hence, we provide a translation from SHF into CSHF :

Definition 4.1. The translation ψ of an SHF -process into an CSHF -process is
defined homomorphically on the structure of processes: Usually it is the identity
on the constructs; the only exception is ψ(x t e) := x tg e ∅ [], i.e. initially, the list
of threads to be notified is empty and the TVar is not locked. CSHF -processes
ψ(P ) where P ′ is an SHF -process are the initial CSHF -processes.

Since only transactions can introduce local TVars which are removed at the
end of a transaction, the following lemma holds:

Lemma 4.2. Every initial CSHF -process is well-formed provided the corre-
sponding SHF -process is well-formed. Also, every reduction descendant of an
initial CSHF -process is well-formed.



14 M. Schmidt-Schauß and D. Sabel

We are mainly interested in CSHF -reductions that start with initial CSHF -
processes. We will show that the translation ψ is adequate. Since ψ is composi-
tional, the hard part is to show that may- and should-convergence are the same
for the big-step semantics and the concurrent implementation.

In order to be on solid ground, we first have to analyze the invariants during
transactions and properties of the valid configurations.

Lemma 4.3. The following properties hold during a CSHF -reduction on a well-
formed CSHF -process that is reachable from a non-transactional CSHF -process.

1. For every component x tl e, either x ∈ Ln of the top entry in L, or there is a
global TVar x. For every pair of thread identifier u, and TVar-name x, every
stack element of the TVar-stack for u contains at most one entry x tl e.

2. If u is in a notify-list of a global TVar, then thread u is transactional.
3. Every transaction that starts the commit-phase for thread u by performing

the rule (writeStart) is able to perform all other rules until (writeEnd) is
performed, without retry, nontermination or getting stuck.

Also, it is easy to extend the monomorphic type system to CSHF and to see
that reduction keeps well-typedness.

Definition 4.4. A CSHF -process P is successful, iff it is well-formed and the

main thread is of the form 〈uoy〉 main⇐== return e. May- and should-convergence

in CSHF are defined by: P↓CSHF iff P is well-formed and ∃P ′ : P
CSHF ,∗−−−−−→

P ′ ∧ P ′ successful. P⇓CSHF , iff P is well-formed and ∀P ′ : P
CSHF ,∗−−−−−→ P ′ =⇒

P ′↓CSHF . Must- and may-divergence of process P are the negations of may-
and should-convergence and are denoted by P⇑CSHF , and P↑CSHF , resp., where

P↑CSHF is also equivalent to P
CSHF ,∗−−−−−→ P ′ such that P ′⇑CSHF .

Contextual approximation ≤CSHF and equivalence ∼CSHF in CSHF are de-
fined as ≤CSHF := ≤↓CSHF

∩ ≤⇓CSHF
and ∼CSHF := ≤CSHF ∩ ≥CSHF where for

ζ ∈ {↓CSHF ,⇓CSHF}: P1 ≤CSHF ,ζ P2 iff ∀D ∈ PCC : D[P1]ζ =⇒ D[P2]ζ.

Definition 4.5. If P1↓CSHF ⇐⇒ P2↓CSHF and P1⇓CSHF ⇐⇒ P2⇓CSHF

then we write P1 ∼ce P2, A program transformation τ (i.e. a binary relation over
CSHF -processes) is convergence equivalent iff P1 τ P2 always implies P1 ∼ce P2.

The reasoning in the following only concerns convergence equivalence, where
we have to show: preservation of may-convergence (P↓ ⇒ ψ(P )↓CSHF ), reflec-
tion of may-convergence (ψ(P )↓CSHF ⇒ P↓), preservation of should-convergence
(P⇓ ⇒ ψ(P )⇓CSHF ), and reflection of should-convergence (ψ(P )⇓CSHF ⇒ P⇓).

Preservation of May-Convergence. We have to show that P↓ implies
ψ(P )↓CSHF , which is not completely straightforward, since the big-step reduc-

tion
SHFA,∗−−−−−→ can be tried for free, and only in the case of success, i.e., a returnSTM

is obtained by an atomic transaction, the changes of the
SHFA,∗−−−−−→-reduction se-

quence are kept. Also, if an orElse-expression is reduced, the big-step reduction



Correctness of an STM Haskell Implementation 15

(cpBE) x = E[x1] |x1 = x2 | . . . |xm−1 = xm |xm = v
→ x = E[v] |x1 = x2 | . . . |xm−1 = xm |xm = v,
if v is an abstraction, a cx-value or a component-name, and E 6= [·].

(absB) x = c e1 . . . en → νx1, . . . xn.x = c x1 . . . xn |x1 = e1 | . . . |xn = en.

(funrB) Every functional rule (without the surrounding L-context) in a context
x = E[·], but not (cp) and not (abs).

(absG) x tg e o g −→ νz.x tg z o g | z = e where o ∈ {∅, u}
(absAt) 〈xou〉⇐MIO[(atomically e)]] −→ 〈xou〉⇐MIO[(atomically z)] | z = e.

(gc) νx1, . . . , xn.P |x1 = e1 | . . . |xn = en −→ νx1, . . . xn.P
if for all i = 1, . . . , n: xi does not occur free in P .

Fig. 6. Special Transformations for CSHF

is permitted to evaluate the second expression, if it is known that the first one
would end in a retry. This is different in CSHF , since the execution has to first
evaluate the left expression of an orElse-expression, and only in case it “retries”,
the second expression will be evaluated where the changes of the TVars are not
kept, but changes belonging to functional evaluation in the bindings are kept.
Analyzing the behavior exhibits that these changes of the process can be proved
as convergence equivalent transformations.

As a base case, the following lemma holds:

Lemma 4.6. If P is successful, then ψ(P ) is successful.

An easy case are non-(atomic)-standard reductions:

Lemma 4.7. If P1
SHF ,a−−−−→ P2 where a 6= (atomic), then ψ(P1)

CSHF−−−−→ ψ(P2).

The more complex cases arise for the transactions in the big-step reduction.
In this case the state of the concurrent implementation consists of stacks, global
TVars and stacks of local TVars. We consider several program transformations
related to reduction rules, which are chosen such that it is sufficient to simulate
the modifications in the bindings of the retried CSHF -standard reductions and
then to rearrange reduction sequences of the concurrent implementation.

Definition 4.8 (CSHF special transformations). The special transforma-
tions are defined in Fig. 6 where we assume that they are closed w.r.t. D-
contexts and structural congruence, i.e. for any transformation

a−→ with a ∈
{(cpBE), (absB), (funrB), (absG), (absAt), (gc)} we extend its definition as fol-

lows: If P ≡ D[P ′], Q ≡ D[Q′], and P ′
a−→ Q′, then also P

a−→ Q.

In the appendix (Lemma B.2) we show:

Lemma 4.9. The rules in Fig. 6 are convergence equivalent.

First we observe the effects of global retries:



16 M. Schmidt-Schauß and D. Sabel

Lemma 4.10. If there is a CSHF -reduction sequence P1
CSHF ,∗−−−−−→ P2, where an

STM-transaction is started in the first reduction for thread u, and the last re-
duction is a global retry, i.e. (retryEnd) for thread u, of the transaction, then

P1
∗−→ P2 using the CSHF -special-transformations (cpBE), (absB), (funrB),

(absG), and inverse (gc)-transformations from Definition 4.8.

Proof. A global retry removes all generated local TVars for this thread. There
may remain changes in the global TVars and in the bindings: Transformations
(absG) may be necessary for global TVars. Functional transformations in the
sharing part are still there, but may be turned into non-standard reductions,
if these were triggered only by the thread u. Since (cp)-effects in the thread
expression are eliminated after a retry in an orElse: These may be (cpBE),
(absB), (funrB). Various reductions generate bindings which are no longer used
after removal of the first expression in an orElse, which can be simulated by a
reverse (gc).

Lemma 4.11. If P1
SHF ,atomic−−−−−−−−→ P2, then ψ(P1)

CSHF ,∗−−−−−→ P ′2, and P ′2
trans,∗−−−−→

ψ(P2), where
trans−−−→ consists of (cpBE), (absB), (funrB), (absG), and inverse

(gc)-transformations in Fig. 6.

Proof. The correspondence between the contents of the global TVar x in CSHF
for a single thread u is the local TVar x on the top of the stack, or the global TVar
if there is no local TVar for x. The rules that change the bindings permanently in
the atomic-transaction reduction are: (atomic), (readl), (readg), (orElse), which
can be simulated by sequences of (absG) and reverse (gc). The effects of the
functional rules ((cpQ), (absQ), (mkbQ), (lbetaQ), (caseQ)) that survive a retry
are either simulated by (mkbQ), (lbetaQ), (caseQ) in a binding, or by (cpBE),
(absB), or inverse (gc). An (ortry)-reduction in SHF can be simulated in CSHF
by a sequence of reductions starting with (orElse) and ending with (orRetry).
However, since (ortry) undoes all changes, in CSHF it is necessary to undo the
changes in bindings by the special transformations.

Theorem 4.12. For all SHF -processes P , we have P↓ =⇒ ψ(P )↓CSHF .

Proof. This follows by an induction on the length of the given reduction sequence
for P . The base case is covered in Lemma 4.6. Lemmas 4.7 and 4.11 show that if
P1

SHF−−−→ P2, then there is some CSHF -process P ′2 such that ψ(P1)
CSHF ,∗−−−−−→ P ′2

with P ′2 ∼ce ψ(P2). This is sufficient for the induction step.

Reflection of May-Convergence In this section we distinguish the different
reduction steps within a reduction sequence ψ(P1)

∗−→ P2 for the different threads
u. A (sendRetry)-reduction belongs to the sending thread. A subsequence of the
reduction sequence starting with (atomic) and ending with (writeEnd), which in-
cludes exactly the u-reduction steps in between, and where no other (atomic) or
(writeEnd)-reductions are contained is called a transaction. A prefix of a trans-
action is also called a partial transaction. The subsequence of an u-transaction



Correctness of an STM Haskell Implementation 17

for thread u starting with (writeStart) and ending with (writeEnd) is called
the commit-phase of the transaction. If the subsequence for thread u starts with
(atomic) and ends with (retryEnd), without intermediate (atomic) or (retryEnd),
then it is an aborted transaction. The subsequence from the first (retryCGlob)
until (retryEnd) is the abort-phase of the aborted transaction. A prefix of an
aborted transaction is also called a partial aborted transaction.

Theorem 4.13. For all SHF -processes P , we have ψ(P )↓CSHF =⇒ P↓.

Proof. Let ψ(P1)
CSHF ,∗−−−−−→ P2 where P2 is successful. Since the transactions in

the reduction sequence may be interleaved with other transactions and reduc-
tion steps, we have to rearrange the reduction sequence in order to be able to
retranslate it into SHF .

Partial Transactions that do not contain a (writeStart) within the reduction
sequence can be eliminated and thereby replaced by interspersed special trans-
formations using Lemma 4.10, which again can be eliminated from the suc-
cessful reduction sequence by Lemma B.2. If the partial transaction contains a
(writeStart), then the missing reduction steps can be added within the reduction
sequence before a successful process is reached, since the commit-phase does not
change the successful-property of processes.
Aborted Transactions can be omitted since they are replaceable by special trans-
formations, which again can be removed.
Grouping Transactions: We can now assume that within the reduction sequence

ψ(P1)
CSHF ,∗−−−−−→ P2 where P2 is successful, all transactions are completed, and

that there are no aborted ones. Now we rearrange the reduction sequence: The
(writeEnd)-reduction step is assumed to be the point of attraction for every
transaction. Moving starts from the rightmost non-grouped transaction. For this
U -transaction, we move the reduction steps that belong to it in the direction of
its (writeEnd), i.e., to the right. Non-functional reduction steps belonging to u
belong only to u, and can be moved to the right until they are at their place
within the transaction, where they may also be commuted with a functional
u-reductions if this is triggered by another thread. Functional reduction steps
may be triggered by several threads, i.e. may belong to several transactions, but
are also moved to the right, where reduction steps can only be commuted if
they do not belong to the same thread, The transaction for thread u is com-
plete, if the reduction step (atomic) is moved to its place. Now the reduction

sequence is like Q1;
(writeEnd)−−−−−−−−→; Q2;

(atomic)−−−−−−→;Q3, where Q1 is the ungrouped
part, Q2 consists only of functional reductions and of IO-reductions, and the

sequence
(atomic)−−−−−−→;Q3 is the part of the reduction where all transactions are al-

ready grouped together. Now the reduction sequence is almost in a form that can
be backtranslated into SHF . The last problem are the local retries in orElse-
expressions in CSHF , which in SHF are without effect in the bindings. Using
Lemma B.2 it is not hard to see that the (orElse)-reductions, including the retries
in the transaction can be replaced by applications of the reduction (orElseND):



18 M. Schmidt-Schauß and D. Sabel

(orElseND) 〈uoy〉 T,L⇐== MA[orElse e1 e2] | (u tls (r : s))
CSHF−−−−→ 〈uoy〉 T,L⇐== MA[ei] | (u tls (r : s)) where i ∈ {1, 2}

This produces a converging reduction sequence, of standard reductions and
(orElseND)-reductions, which, of course, requires to change the exact form of
bindings using the special transformations. Looking into the orelse-tree of a sin-
gle transaction, the obtained reduction sequence for every transaction is the left-
most possibility to have a successful transaction. This corresponds exactly to the
execution in the big-step semantics. Now we retranslate the reduction sequence
including the (orElseND) into an SHF -reduction, where the non-transactional

reduction steps are exactly translated and the steps within
SHFA,∗−−−−−→ are confor-

mant with the successful path in the orElse-tree on the CSHF -side. ut

Corollary 4.14. Let P be an SHF -process. Then P⇑ ⇐⇒ ψ(P )⇑CSHF .

Reflection of Should-Convergence is shown as preservation of may-
divergence, similar as for the preservation of may-convergence in Theorem 4.12,
where now, however, the reduction sequence ends in a must-divergent process.
Using Corollary 4.14 as a base case shows that may-divergence is preserved:

Theorem 4.15. For all SHF -processes P , we have P↑ =⇒ ψ(P )↑CSHF .

Preservation of Should-Convergence This is the last part of the analysis,
where we prove the following theorem:

Theorem 4.16. For all SHF -processes P , we have ψ(P )↑CSHF =⇒ P↑.

Proof. Assume given a non-transactional CSHF -process ψ(P ) with

ψ(P )
CSHF ,∗−−−−−→ P1 and P1⇑CSHF . The reasoning is as in Theorem 4.13

with some differences, since we have to ensure the condition P1⇑CSHF , which
is more complex than the “successful”-condition. Partial transactions: If
it includes a (writeStart) or a (retryCGlob), then the transaction can be

completed by P1
CSHF ,∗−−−−−→ P ′1 where P ′1⇑CSHF , and so we can assume that

these do not exist. If the partial transaction does neither include a (writeStart)
nor a (retryCGlob), then using the same arguments as in Theorem 4.13, we
see that we can assume that the partial transaction is grouped before P1, i.e.

the transaction ends with the partial transaction P ′′1
CSHF ,∗−−−−−→ P1. Lemma C.1

shows that P ′′1 ↑CSHF , which permits to assume that the partial transaction can
be omitted. Aborted transactions: can be omitted since they are replaceable
by special transformations, which again can be removed due to Lemma B.2.
Grouping transaction: same arguments as in the proof of Theorem 4.13. Final
retranslation: similar to the proof of Theorem 4.13.

Summary. We have proved in Theorems 4.12, 4.13, 4.15, and 4.16 that
the translation ψ mapping SHF -processes into CSHF -processes is convergence
equivalent. Together with compositionality of ψ, we obtain observational cor-
rectness and adequacy:



Correctness of an STM Haskell Implementation 19

Main Theorem 4.17. The translation ψ : SHF → CSHF is observational
correct, i.e. for all process contexts D and SHF -processes P the equivalences
D[P ]↓ ⇐⇒ ψ(D)(ψ(P ))↓CSHF and D[P ]⇓ ⇐⇒ ψ(D)(ψ(P ))⇓CSHF holds.
This also implies that ψ is adequate, i.e. ψ(P1) ∼CSHF ψ(P2) =⇒ P1 ∼c P2.

This shows that CSHF is a correct evaluator for SHF -processes w.r.t. the
big-step semantics.

Instead of permitting to retry a transaction too often, the strategy from [6]
can be applied: activate retried transaction Q only if some of the read TVars is
modified. The proofs above can be used to show that this restriction of reductions
is equivalent to the CSHF -semantics.

Note that omitting the send retry for abortion would make the implementa-
tion incorrect (non-adequate): a thread that runs into a loop if TVar x contains
a 1 and returns otherwise, may block this thread indefinitely, which is not the
case in the specification SHF .

5 Related Work

General remarks on STM can be found in [3,4]. [3] argue that more research is
needed to reduce the runtime overhead of STM. We believe that ease of mainte-
nance of programs and the increased concurrency provided by STM may become
more important in the future. The paper which strongly influenced our work is
[6]. SHF borrows from the operational semantics of STM Haskell, where differ-
ences are that our calculus is extended by futures, models also the call-by-need
evaluation, but does not include exceptions and is restricted to monomorphic
typing. [6] describe the current implementation of STM Haskell in the Glasgow
Haskell Compiler (GHC), however no formal treatment of this implementation
is given. The approach taken in the GHC implementation is close to ours with
the difference that instead of aborting transactions by the committing transac-
tion (i.e. sending retries in CSHF ), transactions abort and restart themselves by
temporarily checking the local transaction log against the status of the global
memory, and thus detecting conflicts. This is comparable to our approach, and
we are convinced that the implementations are closely related. However, mod-
elling their approach in a formal semantics would require more effort due to
pointer-equality, for example. A potential semantical problem in [6] is that ex-
ceptions may make local values of TVars visible outside the transaction.

A semantical investigation of STM is in [2], where a call-by-name functional
core language with concurrent processes is defined, and a contextual equivalence
is used as equality. Also strong results are obtained by proving correctness of
the monad laws and other program equivalences w.r.t. their semantics. However,
[2] only considers may-convergence in the contextual equivalence, which is too
weak for reasoning about non-deterministic (and concurrent) calculi. Also, seq
is missing in [2] which is used in Haskell and known to change the semantics,
such that validity of the monad laws only holds under further typing restrictions
(see [10]). A further difference to our work is that [2] use pointer equality.



20 M. Schmidt-Schauß and D. Sabel

[7] propose to investigate correctness of an implementation, but stick to test-
ing. [1] consider correctness of implementing STM in a small calculus with call-
by-value reduction and a monadic extension similar to the STM/IO-extension
in [6]. The main reasoning tool is looking for traces of effects, and arguing about
commuting and shifting the effects within traces, where several important prop-
erties are proved It is hard to compare the results with ours, however, from
an abstract level, their proof method appears to ignore the should-convergence
restriction: There is no argument on forced aborts of transactions.

6 Conclusion

We have presented a big-step semantics for STM-Haskell as a specification, and
a small-step concurrent implementation. Using formal reasoning and the strong
notion of contextual equivalence with may- and should-convergence we prove
correctness of the implementation. As a proof of concept we implemented a
prototype of our approach in Haskell1, which gives evidence of the correct design
of CSHF .

Further research directions are to consider smarter strategies for earlier
aborts and retries of conflicting transactions, extending the language, for ex-
ample by exceptions, and a polymorphic type system.

References

1. Bieniusa, A., Thiemann, P.: Proving isolation properties for software transactional
memory. In: Proc. ESOP’11. Volume 6602 of LNCS. (2011) 38–56

2. Borgström, J., Bhargavan, K., Gordon, A.D.: A compositional theory for STM
Haskell. In: Proc. Haskell ’09, ACM (2009) 69–80

3. Cascaval, C., Blundell, C., Michael, M.M., Cain, H.W., Wu, P., Chiras, S., Chat-
terjee, S.: Software transactional memory: why is it only a research toy? Commun.
ACM 51(11) (2008) 40–46

4. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers (2010)

5. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proc. PPoPP’05, ACM (2005) 48–60

6. Harris, T., Marlow, S., Peyton Jones, S.L., Herlihy, M.: Composable memory
transactions. Commun. ACM 51(8) (2008) 91–100

7. Hu, L., Hutton, G.: Towards a verified implementation of software transactional
memory. In: Proc. TFP’08. Volume 9., Intellect (2009) 129–144

8. Rensink, A., Vogler, W.: Fair testing. Inform. and Comput. 205(2) (2007) 125–198

9. Sabel, D., Schmidt-Schauß, M.: A call-by-need lambda-calculus with locally
bottom-avoiding choice: Context lemma and correctness of transformations. Math.
Structures Comput. Sci. 18(03) (2008) 501–553

10. Sabel, D., Schmidt-Schauß, M.: A contextual semantics for Concurrent Haskell
with futures. In: Proc. PPDP’11, ACM (2011) 101–112

1 The source code is available from http://www.ki.cs.uni-frankfurt.de/research/stm



Correctness of an STM Haskell Implementation 21

11. Sabel, D., Schmidt-Schauß, M.: Conservative concurrency in Haskell. In: Proc.
LICS’12, IEEE (2012) 561–570

12. Schmidt-Schauß, M., Niehren, J., Schwinghammer, J., Sabel, D.: Adequacy of
compositional translations for observational semantics. In: Proc. IFIP TCS’08.
Volume 273 of IFIP., Springer (2008) 521–535

13. Shavit, N., Touitou, D.: Software transactional memory. In: Proc. PODC’95, ACM
(1995) 204–213

14. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing,
Special Issue 10 (1997) 99–116

15. van Eekelen, M.C.J.D., Plasmeijer, M.J., Smetsers, J.E.W.: Parallel graph rewrit-
ing on loosely coupled machine architectures. In: Proc. CTRS’90. Volume 516 of
LNCS., Springer (1990) 354–369



22 M. Schmidt-Schauß and D. Sabel

A Typing Rules for SHF

types(c) is the set of monomorphic types of constructor or monadic operator c

Γ (x) = τ, Γ ` e :: IO τ

Γ ` 〈uox〉⇐ e :: wt

Γ (x) = τ, Γ ` e :: τ

Γ ` x = e :: wt

Γ ` P1 :: wt, Γ ` P2 :: wt

Γ ` P1 |P2 :: wt

Γ (x) = TVar τ, Γ ` e :: τ

Γ ` x t e :: wt

Γ ` P :: wt

Γ ` νx.P :: wt

Γ (x) = τ

Γ ` x :: τ

Γ ` e :: τ1 and τ1 = (T . . .), ∀i : Γ ` (ci x1,i . . . xni,i) :: τ1, ∀i : Γ ` ei :: τ2

Γ ` (caseT e of(c1 x1,1 . . . xn1,1 → e1) . . . (cm x1,m . . . xnm,m → em)) :: τ2

∀i : Γ (xi) = τi, ∀i : Γ ` ei :: τi, Γ ` e :: τ

Γ ` (letrec x1 = e1, . . . xn = en in e) :: τ

Γ ` e1 :: τ1 → τ2, Γ ` e2 :: τ1

Γ ` (e1 e2) :: τ2

Γ (x) = τ1, Γ ` e :: τ2

Γ ` (λx.e) :: τ1 → τ2

Γ ` e1 :: τ1, Γ ` e2 :: τ2, τ1 = τ3 → τ4 or τ1 = (T . . .)

Γ ` (seq e1 e2) :: τ2

∀i : Γ ` ei :: τi, τ1 → . . .→ τn → τn+1 ∈ types(c)

Γ ` (c e1 . . . ear(c)) :: τn+1

where c is a constructor,
or a monadic operator

Fig. 7. Typing rules

B Convergence Equivalence of Special Transformations

In this section we show convergence-equivalence of special transformations in the
concurrent calculus CSHF . We also prove convergence-equivalence of the further
rule (cpxgc), shown in Fig. 8, which is necessary to close critical overlappings.
We also assume that (cpxgc) is closed w.r.t. ≡ and PCC-contexts.

Since for the rules of the calculus CSHF , the variable (binding-) chains are
transparent, there is no need to copy binding-variables to other places in the
expressions, which strongly reduces the number of critical overlappings. This,
however, enforced that (abs) is in the set of standard reductions.

In the following we use forking and commuting diagrams, where in general we
only write the forking diagrams. A forking diagram shows (in an abstract way,

since processes are omitted) how a given overlapping
CSHF←−−−− T−→ (the fork) be-

tween a standard reduction and a transformation T can be closed, a commuting

diagram shows how a sequence
T−→ SHF−−−→ can be closed, i.e. how a transforma-

tion and a reduction can be commuted. A set of diagrams for a transforma-

tion T is complete if for every concrete fork P1
CSHF←−−−− P2

T−→ P3 (or sequence

P1
T−→ P2

SHF−−−→ P3) at least one diagram of the set is applicable, which means
that the corresponding transformations and reductions exist (on the concrete
level). Since there may be several concurrent threads, the diagrams have to ex-
press reduction commutations of concurrent reductions. In order to have simple



Correctness of an STM Haskell Implementation 23

(cpxgc) νx.C[x, . . . , x]] |x = y −→ C[y, . . . , y]]
where C is a context, where all holes are in an A-context, and all occurrences
of x are indicated in the notation, i.e., there are no other occurrences.
A is the class of expression contexts where the hole is not within an
abstraction nor in a letrec-expression, nor in an alternative of a case and not
in an argument of a constructor.

Fig. 8. The (cpxgc) transformation

(trans)

·
CSHF ,a

��

trans // ·
CSHF ,a
��

·
trans

// ·

·
CSHF ,a

��

trans // ·

CSHF ,ayy·

·
CSHF ,a

��

trans // ·

·

Fig. 9. The standard: square and triangle diagrams of special transformations in Fig. 6
and 8

(absG)

·
CSHF ,a

��

absG // ·
CSHF ,a
��

· oo
gc

·
(absAt)

·
CSHF ,a

��

absAt // ·
CSHF ,a
��

· oo
cpxgc

·

(absB)

·
CSHF ,a

��

absB // ·
CSHF ,a
��

· oo
cpxgc

·
(cpxgc)

·
CSHF ,a

��

cpxgc // ·
CSHF ,a
��

·
gc

// ·

Fig. 10. The unusual forking diagrams of special transformations in Fig. 6 and 8

forms of diagrams, at most a single sr-reduction should be vertically in the dia-
grams on the west- and east-side. If more standard reductions would be necessary,
then reasoning is far more complex.

Lemma B.1. The forking diagrams of the transformations in Fig. 6 and 8
with standard-reductions may be square or triangle diagrams or the equality (see
Fig. 9). The unusual forking diagrams of the transformations in Fig. 6 and 8
are in Fig. 10. The commuting diagrams can be obtained from them by taking
the same diagram where the existential and given vertical arrows are switched.
The equality diagram may only occur as follows: an (absB)-transformation may
be a (CSHF ,abs)-reduction, a (cpBE)-transformation may be a (CSHF ,cp)-
reduction, and a (funrB)-transformation may be a functional standard reduction.

Proof. We provide arguments for every reduction, and also exhibit exceptional
diagrams in Fig. 11. For a (gc) transformation it is easy to verify that bindings
cannot be removed by any standard reduction, and standard reductions do not
interfere with the removed bindings by (gc). For (cpBE) the restriction of the
target positions shows that there is no fork, where the to-be-copied expression
of a standard reduction is modified by (cpBE). The sharing mechanism in, for
example, (orElse) and (readg) shows that there is no duplicate of (cpBE) in the



24 M. Schmidt-Schauß and D. Sabel

Forking with a (atomic) standard reduction:

〈uox〉⇐ atomically e

CSHF ,(atomic)

��

absAt //

CSHF ,(atomic)

��

〈uox〉⇐ atomically z
| z = e

CSHF ,(atomic)

��
〈uox〉⇐ atomically! z z

| z = e
〈uox〉⇐ atomically! z′ z′

| z′ = z | z = e
cpxgc

oo

Forking standard reduction (cp) with (cpxgc):

νx.E[x] |x = y | y = v

CSHF ,cp
��

cpxgc // νx.E[y] | y = v

CSHF ,cp
��

νx.E[v] |x = y | y = v
gc // νx.E[v] | y = v

Forking (writeTV) with (absG)

x tg e o g . . .
absG //

CSHF ,writeTV
��

x tg z o g | z = e

CSHF ,writeTV
��

x tg e′ o g . . . oo
gc

x tg e′ o g | z = e

Forking (cp) with (absB)

E[x] |x = c y1 y2 . . .
absB //

CSHF ,cp
��

E[x] |x = c z1 z2 | z1 = y1 | z2 = y2

CSHF ,cp
��

E[c y1 y2] |x = c y1 y2 . . . oo
cpxgc

E[c z1 z2] |x = c z1 z2 | z1 = y1 | z2 = y2

Fig. 11. Examples for diagrams in Lemma B.1

south edge of diagrams. A further argument is that the standard reduction is de-
terministic within threads. For (funrB) the reduction takes place inside a binding
an never inside a thread, hence standard reductions and (funrB) only have trivial
overlappings. The (absG) transformation may critically overlap with a (writeTV)
standard reduction. In this case a (gc) is required to remove the created bindings.
The (absAt) transformation can critically overlap with the (atomic) reduction
where (cpxgc) is necessary to remove indirections. The transformation (absB)
may critically overlap with a (cp) that copies a cx-value where again (cpxgc) can
be used to remove indirections. The exceptional diagram for (cpxgc) using (gc)
in the south arrow occurs for example in a forking of (case), (seq), or (lbeta)
with (sendRetry).

Lemma B.2. The rules in Fig. 6 and 8 are convergence equivalent for may-
convergence and should-convergence in the calculus CSHF .

Proof. We first consider may-convergence. Note that due to the reverse transfor-
mation steps in the diagrams, it is necessary to show that the transformations

preserve and reflect convergence in one induction. Let P ′
CSHF ,k←−−−−− P

τ−→ P ′′

where τ is any of the special transformations or their inverse transformation, P ′



Correctness of an STM Haskell Implementation 25

is successful and k ≥ 0. By induction on k we show that P ′′ is may-convergent.
For the base case, P is already successful. Then P ′′ must be successful, too,
which follows by inspection of the definitions of the transformations. For the

induction step assume P ′
CSHF ,k←−−−−− P1

CSHF←−−−− P
τ−→ P ′′ for some k ≥ 0. Then

depending on the direction of τ we apply a forking or a commuting diagram of

Lemma B.1 to P1
CSHF←−−−− P τ−→ P ′′. Then there are the following cases:

– If the second or the third diagram of Fig. 9 is applied, then either P ′′
CSHF−−−−→

P1 or P ′′ = P1. In both cases this implies P ′′↓CSHF .
– If any other diagram is applied, then there exists a process P2 and a special

transformation or its inverse τ ′ such that P1
τ ′

−→ P ′′
CSHF−−−−→ P2. Now we apply

the induction hypothesis to P ′
CSHF ,k←−−−−− P1

τ ′

−→ P2 and derive P2↓CSHF . Since

P ′′
CSHF−−−−→ P2, we also have P ′′↓CSHF .

The proof for should-convergence is completely analogous except for the base
case: The base case requires that if P

τ−→ P ′ then P⇑CSHF ⇐⇒ P ′⇑CSHF . But
this holds by equivalence w.r.t. may-convergence.

C Should-Convergence Preservation

The following property is required in the proof of preservation of should-
convergence (reflection of may-divergence): That partial transactions can be
eliminated:

Lemma C.1. Let P0 be a nontransactional process, P0
CSHF ,∗−−−−−→ P1 with

P1⇑CSHF , such that P
Q−→ P1 is a suffix of the reduction and P

Q−→ P1 is a partial
transaction for a thread u starting with (atomic) but the commit-phase and the
retry-phase is missing, i.e. there is no reduction (writeStart) nor a (retryCGlob)
for thread u. Then P⇑CSHF .

Proof. The proof is by contradiction. Assume that P↓CSHF , i.e. P
CSHF ,∗−−−−−→ P2,

where P2 is successful. Then we have to argue that this implies P1↓CSHF .

P

��

Q,u

CSHF
// P1⇑

?CSHF

��
P2 (success) ·

The assumption that P0 is a nontransactional process implies that the reduction
sequences are reachable and thus the notifications and memory at the thread
arrows and the Tvars are consistent.
Using the claims in the proof of Theorem 4.13, we can assume that in the reduc-

tion sequence P
CSHF ,∗−−−−−→ P2 all transactions are completed and that there are

no aborted transactions.



26 M. Schmidt-Schauß and D. Sabel

The goal is now to construct a converging CSHF -reduction sequence for
P1. The idea is to use the same reduction steps as for P . Let us ignore the
functional and the IO-reduction steps and concentrate on the transactional ones.

The reduction steps can be shifted from P
CSHF ,∗−−−−−→ P2 to a reduction sequence

for P1. Note that this shifting may also be accompanied by modified notification
entries of TVars.
There are two cases:

1. If the TVars read by the transaction Q are unchanged in P
CSHF ,∗−−−−−→ P2 (up

to bindings via variable-chains), then a construction of a reduction of P1 to
a successful process is possible in a standard way, where the u-transaction is
either unused or will be completed.

2. Let V be the set of global TVars read by the transaction Q. Assume some

TVar from V is updated in the prefix of P
CSHF ,∗−−−−−→ P2, before any u-

transaction starts. then we can again construct a converging standard re-
duction for P1: Transporting the reduction steps to P1, the only difference
are the notifications for the TVars read by the u-transaction. There will be
an extension by a (sendRetry) that aborts the (image of the) Q-transaction,
which we will add immediately after a commit of the updates.
After the retry the state (i.e. the process) is the same in the two reductions up
to some special transformations. Now we can proceed with the construction
that transports the reductions from the successful reduction sequence to
the P1-reduction sequence. This will end in a converging standard reduction
sequence for P1.

This contradicts the assumption that P1 is must-divergent.


	Correctness of an STM Haskell Implementation

